PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o960.
Published online 2009 April 2. doi:  10.1107/S1600536809011714
PMCID: PMC2977660

N-[3-(2-Methyl­phen­yl)isoquinolin-1-yl]formamide

Abstract

The title compound, C17H14N2O, crystallizes as a cis formamide isomer. The isoquinoline and benzene fragments are nearly perpendicular [dihedral angle = 81.79 (18)°], whereas the formamide group is virtually coplanar with the isoquinoline unit [dihedral angle = 1.66 (15)°]. Inter­molecular N—H(...)O hydrogen bonds link mol­ecules into a centrosymmetric dimer.

Related literature

For the cytotoxic activity of aryl­isoquinolines, see: Cho et al. (2002 [triangle], 2003 [triangle]). For the synthethic procedures relevant to this work, see: Nunno et al. (2008 [triangle]); Tovar & Swager (1999 [triangle]); Cho et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o960-scheme1.jpg

Experimental

Crystal data

  • C17H14N2O
  • M r = 262.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o960-efi1.jpg
  • a = 5.3898 (14) Å
  • b = 11.166 (3) Å
  • c = 11.899 (3) Å
  • α = 106.139 (3)°
  • β = 93.128 (3)°
  • γ = 103.800 (3)°
  • V = 662.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.36 × 0.23 × 0.16 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.971, T max = 0.987
  • 4772 measured reflections
  • 2399 independent reflections
  • 1575 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.124
  • S = 1.03
  • 2399 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011714/gk2201sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011714/gk2201Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Key Discipline of Applied Chemistry, Zhejiang Province, and the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, People’s Republic of China.

supplementary crystallographic information

Comment

Many of the arylisoquinoline derivatives exhibit potent cytotoxic activities against five different human tumor cell lines (Cho et al., 2002, 2003). The title compound, that belongs to arylisoquinolines, has been synthesized to study its cytotoxic activity and its crystal structure is reported here.

Experimental

A 2.5 M solution of n-BuLi in hexanes (54.5 mmol) was added to a solution of the diisopropylamine (59.9 mmol) in THF (5 ml) at 273 K under nitrogen atmosphere. After 10 min, the solution of 2-methylbenzonitrile (36.4 mmol) in THF (5 ml) was added dropwise and the obtained brown reaction mixture was stirred for 1 h, then adding the DMF (18.2 mmol), the mixture was stirred for 2 h at room temperature (Cho et al., 2002; Nunno et al., 2008; Tovar et al., 1999). The mixture was subsequently concentrated under reduced pressure giving the crude product. The residue was recrystallized from ethanol. Colorless crystals of the title compound were obtained by slow evaporation of the solvent after 2 days at room temperature(Yield: 73%, m.p. 401–403 K).

Refinement

All H atoms were placed in calculated posistion with C—H = 0.93 - 0.96 Å, and N—H = 0.86Å and refined in the riding mode aproximation with Uiso(H) = 1.2Ueq of the carrier atom.

Figures

Fig. 1.
View of the molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. H atoms have been omitted for clarity.
Fig. 2.
The molecular packing viewed along the a axis. Hydrogen bonds are shown with dashed lines. H atoms are omitted for clarity.

Crystal data

C17H14N2OZ = 2
Mr = 262.30F(000) = 276
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3898 (14) ÅCell parameters from 1222 reflections
b = 11.166 (3) Åθ = 3.0–26.0°
c = 11.899 (3) ŵ = 0.08 mm1
α = 106.139 (3)°T = 296 K
β = 93.128 (3)°Block, colourless
γ = 103.800 (3)°0.36 × 0.23 × 0.16 mm
V = 662.4 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2399 independent reflections
Radiation source: fine-focus sealed tube1575 reflections with I > 2σ(I)
graphiteRint = 0.017
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 3.0°
[var phi] and ω scansh = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2000)k = −13→13
Tmin = 0.971, Tmax = 0.987l = −14→14
4772 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0578P)2 + 0.0805P] where P = (Fo2 + 2Fc2)/3
2399 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2507 (3)0.67650 (17)0.71903 (14)0.0446 (4)
C20.1010 (3)0.74496 (17)0.67117 (15)0.0444 (4)
C4−0.0799 (4)0.8081 (2)0.51425 (18)0.0651 (6)
H4−0.10150.80320.43490.078*
C5−0.1976 (4)0.8866 (2)0.59439 (18)0.0627 (6)
H5−0.29590.93390.56810.075*
C6−0.1697 (4)0.8945 (2)0.71022 (18)0.0592 (5)
H6−0.25040.94650.76270.071*
C7−0.0188 (3)0.82420 (18)0.75214 (15)0.0481 (5)
C80.0201 (4)0.83123 (19)0.87248 (16)0.0550 (5)
H8−0.05860.88200.92720.066*
C90.1717 (4)0.76428 (18)0.90878 (15)0.0485 (5)
C100.5217 (4)0.52789 (19)0.67853 (16)0.0551 (5)
H100.54310.53460.75830.066*
C110.2307 (4)0.77304 (19)1.03607 (15)0.0479 (5)
C120.0620 (4)0.69894 (19)1.09041 (16)0.0531 (5)
C130.1360 (4)0.7069 (2)1.20679 (17)0.0623 (6)
H130.02610.65671.24370.075*
C140.3655 (4)0.7863 (2)1.26835 (18)0.0636 (6)
H140.41050.78891.34570.076*
C150.5290 (4)0.8620 (2)1.21612 (18)0.0662 (6)
H150.68310.91781.25840.079*
C160.4630 (4)0.8548 (2)1.09957 (17)0.0600 (6)
H160.57510.90511.06350.072*
C17−0.1907 (4)0.6097 (2)1.0258 (2)0.0735 (6)
H17A−0.30100.65961.00760.110*
H17B−0.27100.56021.07460.110*
H17C−0.16170.55240.95410.110*
C180.0666 (4)0.7385 (2)0.55094 (16)0.0558 (5)
H180.14410.68660.49660.067*
N10.2872 (3)0.68582 (15)0.83158 (12)0.0492 (4)
N20.3716 (3)0.59354 (15)0.64362 (12)0.0517 (4)
H20.34690.58440.56940.062*
O10.6325 (3)0.45974 (14)0.61283 (11)0.0655 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0521 (11)0.0470 (11)0.0386 (10)0.0214 (9)0.0112 (8)0.0112 (8)
C20.0477 (10)0.0478 (11)0.0410 (10)0.0187 (9)0.0078 (8)0.0134 (8)
C40.0777 (15)0.0831 (16)0.0477 (11)0.0425 (13)0.0049 (10)0.0231 (11)
C50.0683 (13)0.0731 (15)0.0596 (12)0.0387 (12)0.0033 (10)0.0241 (11)
C60.0639 (13)0.0663 (14)0.0569 (12)0.0364 (11)0.0094 (10)0.0168 (10)
C70.0492 (11)0.0519 (12)0.0466 (10)0.0206 (9)0.0068 (8)0.0142 (9)
C80.0668 (13)0.0630 (13)0.0426 (10)0.0340 (11)0.0147 (9)0.0119 (9)
C90.0555 (11)0.0555 (12)0.0384 (10)0.0238 (10)0.0114 (8)0.0116 (9)
C100.0755 (14)0.0638 (13)0.0380 (10)0.0378 (12)0.0107 (9)0.0170 (9)
C110.0579 (12)0.0535 (11)0.0383 (9)0.0285 (10)0.0111 (9)0.0104 (9)
C120.0595 (12)0.0560 (12)0.0463 (11)0.0227 (10)0.0070 (9)0.0132 (9)
C130.0754 (15)0.0728 (15)0.0434 (11)0.0228 (12)0.0084 (10)0.0220 (10)
C140.0760 (15)0.0762 (15)0.0417 (11)0.0293 (13)0.0017 (11)0.0157 (11)
C150.0628 (13)0.0766 (15)0.0529 (12)0.0210 (12)−0.0034 (10)0.0094 (11)
C160.0576 (13)0.0731 (14)0.0484 (11)0.0181 (11)0.0083 (10)0.0159 (10)
C170.0690 (14)0.0802 (16)0.0671 (14)0.0124 (13)−0.0022 (11)0.0239 (12)
C180.0651 (13)0.0687 (14)0.0419 (10)0.0332 (11)0.0089 (9)0.0163 (10)
N10.0622 (10)0.0564 (10)0.0363 (8)0.0285 (8)0.0113 (7)0.0140 (7)
N20.0707 (11)0.0640 (10)0.0326 (8)0.0390 (9)0.0089 (7)0.0153 (7)
O10.0930 (11)0.0775 (10)0.0454 (7)0.0555 (9)0.0183 (7)0.0194 (7)

Geometric parameters (Å, °)

C1—N11.314 (2)C10—N21.334 (2)
C1—N21.406 (2)C10—H100.9300
C1—C21.430 (2)C11—C121.390 (3)
C2—C181.412 (2)C11—C161.393 (3)
C2—C71.412 (2)C12—C131.393 (3)
C4—C181.365 (3)C12—C171.500 (3)
C4—C51.395 (3)C13—C141.367 (3)
C4—H40.9300C13—H130.9300
C5—C61.354 (3)C14—C151.368 (3)
C5—H50.9300C14—H140.9300
C6—C71.416 (3)C15—C161.388 (3)
C6—H60.9300C15—H150.9300
C7—C81.413 (2)C16—H160.9300
C8—C91.358 (3)C17—H17A0.9600
C8—H80.9300C17—H17B0.9600
C9—N11.369 (2)C17—H17C0.9600
C9—C111.502 (2)C18—H180.9300
C10—O11.218 (2)N2—H20.8600
N1—C1—N2116.00 (15)C16—C11—C9118.94 (17)
N1—C1—C2124.34 (16)C11—C12—C13118.20 (19)
N2—C1—C2119.66 (15)C11—C12—C17121.62 (17)
C18—C2—C7118.91 (16)C13—C12—C17120.16 (19)
C18—C2—C1124.80 (16)C14—C13—C12121.9 (2)
C7—C2—C1116.28 (15)C14—C13—H13119.0
C18—C4—C5120.80 (19)C12—C13—H13119.0
C18—C4—H4119.6C13—C14—C15120.03 (19)
C5—C4—H4119.6C13—C14—H14120.0
C6—C5—C4120.51 (18)C15—C14—H14120.0
C6—C5—H5119.7C14—C15—C16119.5 (2)
C4—C5—H5119.7C14—C15—H15120.2
C5—C6—C7120.56 (18)C16—C15—H15120.2
C5—C6—H6119.7C15—C16—C11120.7 (2)
C7—C6—H6119.7C15—C16—H16119.7
C2—C7—C8118.35 (16)C11—C16—H16119.7
C2—C7—C6119.00 (16)C12—C17—H17A109.5
C8—C7—C6122.64 (17)C12—C17—H17B109.5
C9—C8—C7120.43 (17)H17A—C17—H17B109.5
C9—C8—H8119.8C12—C17—H17C109.5
C7—C8—H8119.8H17A—C17—H17C109.5
C8—C9—N1122.13 (16)H17B—C17—H17C109.5
C8—C9—C11122.85 (16)C4—C18—C2120.22 (18)
N1—C9—C11115.00 (15)C4—C18—H18119.9
O1—C10—N2124.36 (17)C2—C18—H18119.9
O1—C10—H10117.8C1—N1—C9118.43 (15)
N2—C10—H10117.8C10—N2—C1124.96 (15)
C12—C11—C16119.63 (17)C10—N2—H2117.5
C12—C11—C9121.41 (17)C1—N2—H2117.5
N1—C1—C2—C18178.11 (18)C9—C11—C12—C13176.52 (17)
N2—C1—C2—C18−1.4 (3)C16—C11—C12—C17179.84 (18)
N1—C1—C2—C7−1.8 (3)C9—C11—C12—C17−1.9 (3)
N2—C1—C2—C7178.68 (16)C11—C12—C13—C141.1 (3)
C18—C4—C5—C6−0.4 (3)C17—C12—C13—C14179.6 (2)
C4—C5—C6—C70.6 (3)C12—C13—C14—C150.6 (3)
C18—C2—C7—C8−179.13 (18)C13—C14—C15—C16−1.7 (3)
C1—C2—C7—C80.8 (3)C14—C15—C16—C111.0 (3)
C18—C2—C7—C60.1 (3)C12—C11—C16—C150.7 (3)
C1—C2—C7—C6−179.99 (17)C9—C11—C16—C15−177.58 (18)
C5—C6—C7—C2−0.4 (3)C5—C4—C18—C20.0 (3)
C5—C6—C7—C8178.7 (2)C7—C2—C18—C40.1 (3)
C2—C7—C8—C90.8 (3)C1—C2—C18—C4−179.81 (19)
C6—C7—C8—C9−178.41 (19)N2—C1—N1—C9−179.35 (16)
C7—C8—C9—N1−1.5 (3)C2—C1—N1—C91.1 (3)
C7—C8—C9—C11176.90 (18)C8—C9—N1—C10.6 (3)
C8—C9—C11—C1283.5 (3)C11—C9—N1—C1−177.95 (17)
N1—C9—C11—C12−98.0 (2)O1—C10—N2—C1−177.35 (19)
C8—C9—C11—C16−98.3 (2)N1—C1—N2—C10−1.6 (3)
N1—C9—C11—C1680.3 (2)C2—C1—N2—C10177.92 (17)
C16—C11—C12—C13−1.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.862.102.940 (2)165

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2201).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cho, W. J., Kim, E. K., Park, Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. D. & Lee, E. S. (2002). Bioorg. Med. Chem.10, 2953–2961. [PubMed]
  • Cho, W. J., Min, S. Y., Le, T. N. & Kim, T. S. (2003). Bioorg. Med. Chem. Lett.13, 4451–4454. [PubMed]
  • Nunno, L. D., Vitale, P. & Scilimati, A. (2008). Tetrahedron, 64, 11198–11204.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tovar, J. D. & Swager, T. M. (1999). J. Org. Chem.64, 6499–6505.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography