PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o957.
Published online 2009 April 2. doi:  10.1107/S1600536809011842
PMCID: PMC2977657

1-Nitro-2,3-di-2-pyridyl-2,3-dihydro­indolizine

Abstract

The title compound, C18H14N4O2, was found as a by-product in the nitro­aldol reaction between 2-(nitro­meth­yl)pyridine and N-(pyridin-2-ylmethyl­idene)methane­amine. Its two stereogenic centers give rise to four stereoisomers of which only the anti isomers are found in this crystal structure.

Related literature

For the synthesis of 2-(nitro­meth­yl)pyridine, see: Feuer & Lawrence (1972 [triangle]). For nitro­aldol reactions, see: Cwik et al. (2005 [triangle]). For β-nitro­amines, see Lucet et al. (1998 [triangle]). For comparison of bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o957-scheme1.jpg

Experimental

Crystal data

  • C18H14N4O2
  • M r = 318.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o957-efi1.jpg
  • a = 28.0688 (19) Å
  • b = 7.9672 (6) Å
  • c = 21.1859 (15) Å
  • β = 131.408 (4)°
  • V = 3553.4 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 183 K
  • 0.06 × 0.06 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 10925 measured reflections
  • 4021 independent reflections
  • 2564 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.216
  • S = 0.74
  • 4021 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO and the SQUEEZE option (Sluis & Spek, 1990 [triangle]) in PLATON (Spek, 2009 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011842/bt2909sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011842/bt2909Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Bad Godesberg, Germany) for generous financial support. We also acknowledge funding from the Fonds der Chemischen Industrie (Frankfurt/Main, Germany). Additionally we thank Südchemie AG (München, Germany) for providing the hydrotalcite Syntal 696.

supplementary crystallographic information

Comment

β-nitroamines are promising precursors for vicinal diamines, which themselves are a versatile class of compounds (Lucet et al., 1998). The nitroaldol reaction between 2-(nitromethyl)pyridine 1 (Feuer & Lawrence, 1972) and N-(pyridin-2-ylmethylidene)methaneamine 2 yielded the title compound 3 as a byproduct together with methylamine. Although four stereo isomers are possible, only the anti-isomers are found in the crystal structure. The 2-pyridyl rings of neighbouring molecules are arrangend coplanarily with an approximate intermolecular distance of 3.70 Å. Not surprisingly the five-membered dihydroindolizine ring is strained and conjugation of the six-membered ring with the nitro group is observed regarding the bond lengths. They are found to lie between those for single and double bonds (Allen et al., 1987).

Experimental

A nitroaldol reaction (Henry reaction) was carried out with 2-(nitromethyl)pyridine 1 (0.20 g; 1.4 mmol) and N-(pyridin-2-ylmethylidene)methaneamine 2 (0.15 g; 1.2 mmol) in 3.5 ml anhydrous THF with hydrotalcite Syntal 696 (0.13 g) as catalyst (Cwik et al., 2005). The mixture was stirred for eight hours at 60 °C and then cooled to r.t.. Then the solvent was removed in vacuo yielding a sticky brown residue. Thereafter 3 ml of diethylether were added and the yellow etheral solution was separated from the insoluble brownish residue, which was then dissolved in THF. From the latter solution yellow crystals of the title compound were obtained at r.t. (0.017 g). The compound is stable at room temperature and under atmospheric conditions. NMR measurements were carried out on a Bruker AC 200 and Bruker AC 400 spectrometer and referenced to the solvent resonances. Signals were assigned by DEPT 135, HSQC, HMBC experiments.

1H-NMR (CD2Cl2): δ = 8.59 (d, 1H, J = 4.0 Hz, H13), 8.55 (d, 1H, J = 4.0 Hz, H18), 8.30 (d, 1H, J = 8.8 Hz, H5), 7.80–7.77 (m, 1H, H11), 7.76–7.73 (m, 1H, H6), 7.69–7.65 (m, 1H, H16), 7.58 (d, 1H, J = 6.4 Hz, H8), 7.43 (d, 1H, J = 7.6 Hz, H12), 7.35–7.33 (m, 1H, H15), 7.33–7.31(m, 1H, H17), 7.23–7.20 (m, 1H, H19), 6.74–6.71 (m, 1H, H7), 6.08 (d, 1H, J = 4.0 Hz, H3), 4.89 (d, 1H, J = 4.0 Hz, H2);

13C-NMR (CD2Cl2): δ = 159.7 (q,C14), 157.5 (q,C4,C9), 150.7 (t,C13), 150.4 (q,C1), 150.1(t,C18), 142.2 (t,C6), 138.0 (t,C11), 137.3 (t,C8), 136.7 (t,C16), 124.5 (t,C15), 124.1 (t,C12), 122.8 (t,C10), 121.8 (t,C17), 119.6 (t,C5), 114.8 (t,C7), 75.3 (t,C3), 54.1 (t,C2).

Refinement

All hydrogen atoms were calculated at idealized positions and were refined with 1.2 times the isotropic displacement parameter of the corresponding carbon atoms. At the final stage of refinement, clear evidence of the presence of solvent voids of 201.00 Å 3 was obtained. Several trials to find a reasonable model for this were unfruitful. Thus, a correction for diffuse effects due to the inclusion of disordered solvent molecules in the crystal structure was made using the the SQUEEZE option (van der Sluis & Spek, 1990) in the program PLATON (Spek, 2009). Further details are given in the cif.

Figures

Fig. 1.
Molecular structure an numbering scheme of 3. The ellipsoids represent a probability of 40%, H atoms are shown with arbitrary radii.
Fig. 2.
The formation of the title compound.

Crystal data

C18H14N4O2F(000) = 1364
Mr = 318.33Dx = 1.219 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10925 reflections
a = 28.0688 (19) Åθ = 2.6–27.5°
b = 7.9672 (6) ŵ = 0.08 mm1
c = 21.1859 (15) ÅT = 183 K
β = 131.408 (4)°Prism, light yellow
V = 3553.4 (4) Å30.06 × 0.06 × 0.05 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer2564 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
graphiteθmax = 27.5°, θmin = 2.6°
[var phi] and ω scansh = −36→36
10925 measured reflectionsk = −10→8
4021 independent reflectionsl = −22→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 0.74w = 1/[σ2(Fo2) + (0.1821P)2 + 4.6408P] where P = (Fo2 + 2Fc2)/3
4021 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.17598 (9)1.2960 (2)0.14775 (13)0.0452 (5)
O20.16787 (9)1.2549 (2)0.03788 (12)0.0485 (5)
N10.17260 (9)1.1975 (2)0.09773 (14)0.0371 (5)
N20.17010 (8)0.7804 (2)0.15264 (11)0.0298 (4)
N30.04544 (10)0.8231 (3)−0.00295 (16)0.0518 (6)
N40.27897 (9)0.8055 (3)0.13515 (12)0.0357 (5)
C10.17419 (10)1.0305 (3)0.10757 (14)0.0325 (5)
C20.17024 (10)0.9055 (3)0.05051 (14)0.0323 (5)
H2A0.13480.9368−0.00970.039*
C30.15344 (10)0.7422 (3)0.07139 (14)0.0320 (5)
H3A0.17900.64560.07760.038*
C40.17739 (10)0.9488 (3)0.16928 (13)0.0309 (5)
C50.18579 (10)1.0032 (3)0.23890 (14)0.0338 (5)
H5A0.19141.11900.25280.041*
C60.18587 (11)0.8876 (3)0.28665 (15)0.0395 (6)
H6A0.19120.92420.33370.047*
C70.17820 (12)0.7160 (3)0.26747 (16)0.0408 (6)
H7A0.17810.63650.30080.049*
C80.17096 (11)0.6654 (3)0.20010 (15)0.0349 (5)
H8A0.16650.54960.18660.042*
C90.08294 (11)0.7031 (3)0.00711 (14)0.0344 (5)
C100.06039 (11)0.5554 (3)−0.03744 (15)0.0385 (6)
H10A0.08860.4714−0.02780.046*
C11−0.00528 (12)0.5328 (3)−0.09736 (17)0.0473 (7)
H11A−0.02270.4328−0.12990.057*
C12−0.04402 (12)0.6548 (4)−0.10870 (16)0.0451 (6)
H12A−0.08890.6421−0.14940.054*
C13−0.01697 (13)0.7973 (4)−0.0600 (2)0.0525 (7)
H13A−0.04430.8817−0.06750.063*
C140.23253 (10)0.8989 (3)0.06895 (13)0.0317 (5)
C150.24114 (12)0.9906 (3)0.02183 (15)0.0394 (6)
H15A0.20711.0545−0.02500.047*
C160.29952 (13)0.9886 (3)0.04343 (17)0.0444 (6)
H16A0.30661.05200.01230.053*
C170.34797 (12)0.8915 (3)0.11200 (17)0.0437 (6)
H17A0.38870.88650.12860.052*
C180.33500 (12)0.8037 (3)0.15471 (16)0.0401 (6)
H18A0.36800.73730.20130.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0509 (11)0.0294 (9)0.0678 (12)0.0003 (7)0.0446 (10)−0.0052 (8)
O20.0574 (12)0.0393 (10)0.0642 (12)0.0097 (8)0.0467 (11)0.0178 (9)
N10.0373 (11)0.0281 (10)0.0527 (12)0.0046 (8)0.0327 (10)0.0056 (9)
N20.0270 (9)0.0276 (10)0.0322 (9)−0.0005 (7)0.0185 (8)0.0000 (7)
N30.0335 (11)0.0431 (13)0.0634 (14)0.0014 (9)0.0254 (11)−0.0136 (11)
N40.0336 (10)0.0381 (11)0.0356 (10)−0.0006 (8)0.0229 (9)0.0012 (8)
C10.0313 (11)0.0288 (12)0.0382 (12)0.0004 (9)0.0233 (10)0.0015 (9)
C20.0326 (11)0.0305 (12)0.0303 (10)0.0002 (9)0.0193 (10)0.0020 (9)
C30.0313 (11)0.0285 (11)0.0366 (11)0.0008 (9)0.0226 (10)−0.0028 (9)
C40.0253 (10)0.0260 (11)0.0363 (11)0.0020 (8)0.0182 (9)0.0006 (9)
C50.0335 (11)0.0298 (12)0.0377 (12)0.0009 (9)0.0234 (10)−0.0031 (9)
C60.0384 (13)0.0440 (15)0.0386 (12)0.0032 (10)0.0266 (11)0.0006 (10)
C70.0402 (13)0.0415 (14)0.0443 (13)0.0045 (10)0.0295 (12)0.0092 (11)
C80.0333 (12)0.0282 (12)0.0420 (12)0.0001 (9)0.0244 (11)0.0026 (10)
C90.0324 (12)0.0328 (12)0.0371 (12)0.0001 (9)0.0226 (10)−0.0013 (9)
C100.0377 (12)0.0325 (13)0.0449 (13)−0.0023 (10)0.0272 (11)−0.0042 (10)
C110.0372 (13)0.0426 (15)0.0526 (15)−0.0113 (11)0.0256 (12)−0.0134 (12)
C120.0303 (12)0.0531 (16)0.0452 (14)−0.0063 (11)0.0221 (11)−0.0039 (12)
C130.0345 (13)0.0471 (16)0.0651 (17)0.0043 (11)0.0284 (13)−0.0086 (13)
C140.0352 (12)0.0307 (12)0.0305 (10)−0.0021 (9)0.0223 (10)−0.0032 (9)
C150.0469 (14)0.0398 (14)0.0369 (12)0.0043 (11)0.0299 (12)0.0055 (10)
C160.0566 (16)0.0427 (15)0.0532 (15)−0.0055 (12)0.0445 (14)−0.0008 (12)
C170.0408 (13)0.0468 (15)0.0539 (15)−0.0062 (11)0.0357 (13)−0.0068 (12)
C180.0357 (12)0.0430 (14)0.0410 (13)0.0024 (10)0.0252 (11)0.0015 (10)

Geometric parameters (Å, °)

O1—N11.271 (3)C6—H6A0.9500
O2—N11.269 (3)C7—C81.363 (4)
N1—C11.342 (3)C7—H7A0.9500
N2—C81.349 (3)C8—H8A0.9500
N2—C41.367 (3)C9—C101.373 (3)
N2—C31.487 (3)C10—C111.395 (3)
N3—C131.331 (3)C10—H10A0.9500
N3—C91.331 (3)C11—C121.356 (4)
N4—C181.335 (3)C11—H11A0.9500
N4—C141.342 (3)C12—C131.377 (4)
C1—C41.410 (3)C12—H12A0.9500
C1—C21.513 (3)C13—H13A0.9500
C2—C141.519 (3)C14—C151.381 (3)
C2—C31.545 (3)C15—C161.380 (4)
C2—H2A1.0000C15—H15A0.9500
C3—C91.517 (3)C16—C171.394 (4)
C3—H3A1.0000C16—H16A0.9500
C4—C51.400 (3)C17—C181.370 (4)
C5—C61.367 (3)C17—H17A0.9500
C5—H5A0.9500C18—H18A0.9500
C6—C71.402 (4)
O1—N1—O2120.7 (2)C6—C7—H7A120.7
O1—N1—C1120.4 (2)C7—C8—N2119.8 (2)
O2—N1—C1118.9 (2)C7—C8—H8A120.1
C8—N2—C4123.25 (19)N2—C8—H8A120.1
C8—N2—C3124.12 (19)N3—C9—C10123.3 (2)
C4—N2—C3112.24 (18)N3—C9—C3114.8 (2)
C13—N3—C9117.5 (2)C10—C9—C3121.8 (2)
C18—N4—C14117.4 (2)C9—C10—C11117.9 (2)
N1—C1—C4125.2 (2)C9—C10—H10A121.1
N1—C1—C2123.4 (2)C11—C10—H10A121.1
C4—C1—C2111.29 (19)C12—C11—C10119.4 (2)
C1—C2—C14110.71 (18)C12—C11—H11A120.3
C1—C2—C3101.58 (17)C10—C11—H11A120.3
C14—C2—C3114.49 (18)C11—C12—C13118.6 (2)
C1—C2—H2A109.9C11—C12—H12A120.7
C14—C2—H2A109.9C13—C12—H12A120.7
C3—C2—H2A109.9N3—C13—C12123.4 (2)
N2—C3—C9107.82 (17)N3—C13—H13A118.3
N2—C3—C2103.72 (17)C12—C13—H13A118.3
C9—C3—C2112.33 (18)N4—C14—C15122.4 (2)
N2—C3—H3A110.9N4—C14—C2116.42 (19)
C9—C3—H3A110.9C15—C14—C2121.2 (2)
C2—C3—H3A110.9C16—C15—C14119.4 (2)
N2—C4—C5117.9 (2)C16—C15—H15A120.3
N2—C4—C1107.89 (19)C14—C15—H15A120.3
C5—C4—C1134.2 (2)C15—C16—C17118.6 (2)
C6—C5—C4119.2 (2)C15—C16—H16A120.7
C6—C5—H5A120.4C17—C16—H16A120.7
C4—C5—H5A120.4C18—C17—C16118.0 (2)
C5—C6—C7121.2 (2)C18—C17—H17A121.0
C5—C6—H6A119.4C16—C17—H17A121.0
C7—C6—H6A119.4N4—C18—C17124.2 (2)
C8—C7—C6118.7 (2)N4—C18—H18A117.9
C8—C7—H7A120.7C17—C18—H18A117.9
O1—N1—C1—C42.2 (3)C6—C7—C8—N2−1.2 (3)
O2—N1—C1—C4−178.0 (2)C4—N2—C8—C71.3 (3)
O1—N1—C1—C2179.84 (19)C3—N2—C8—C7−170.9 (2)
O2—N1—C1—C2−0.4 (3)C13—N3—C9—C10−0.8 (4)
N1—C1—C2—C1474.7 (3)C13—N3—C9—C3178.4 (2)
C4—C1—C2—C14−107.4 (2)N2—C3—C9—N356.2 (3)
N1—C1—C2—C3−163.3 (2)C2—C3—C9—N3−57.5 (3)
C4—C1—C2—C314.6 (2)N2—C3—C9—C10−124.6 (2)
C8—N2—C3—C969.8 (3)C2—C3—C9—C10121.8 (2)
C4—N2—C3—C9−103.2 (2)N3—C9—C10—C111.4 (4)
C8—N2—C3—C2−170.94 (19)C3—C9—C10—C11−177.8 (2)
C4—N2—C3—C216.1 (2)C9—C10—C11—C12−0.7 (4)
C1—C2—C3—N2−17.3 (2)C10—C11—C12—C13−0.4 (4)
C14—C2—C3—N2102.0 (2)C9—N3—C13—C12−0.5 (5)
C1—C2—C3—C998.8 (2)C11—C12—C13—N31.0 (5)
C14—C2—C3—C9−141.83 (19)C18—N4—C14—C150.1 (3)
C8—N2—C4—C5−0.3 (3)C18—N4—C14—C2−177.2 (2)
C3—N2—C4—C5172.68 (18)C1—C2—C14—N480.8 (2)
C8—N2—C4—C1179.81 (18)C3—C2—C14—N4−33.3 (3)
C3—N2—C4—C1−7.2 (2)C1—C2—C14—C15−96.5 (2)
N1—C1—C4—N2172.5 (2)C3—C2—C14—C15149.4 (2)
C2—C1—C4—N2−5.3 (2)N4—C14—C15—C16−0.7 (4)
N1—C1—C4—C5−7.3 (4)C2—C14—C15—C16176.4 (2)
C2—C1—C4—C5174.8 (2)C14—C15—C16—C170.8 (4)
N2—C4—C5—C6−0.5 (3)C15—C16—C17—C18−0.4 (4)
C1—C4—C5—C6179.3 (2)C14—N4—C18—C170.4 (4)
C4—C5—C6—C70.5 (3)C16—C17—C18—N4−0.3 (4)
C5—C6—C7—C80.4 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2909).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Cwik, A., Fuchs, A., Hell, Z. & Clacens, J. M. (2005). Tetrahedron, 61, 4015–4021.
  • Feuer, H. & Lawrence, J. P. (1972). J. Org. Chem.37, 3662–3670.
  • Lucet, D., Gall, T. L. & Mioskowski, C. (1998). Angew. Chem.110, 2724-2772.
  • Nonius (1998). COLLECT, Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography