PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o949.
Published online 2009 April 2. doi:  10.1107/S1600536809011660
PMCID: PMC2977650

2-Chloro-N-(3-chloro­phen­yl)acetamide

Abstract

The N—H bond in the title compound, C8H7Cl2NO, is anti to the meta-chloro substituent in the aromatic ring in both independent mol­ecules comprising the asymmetric unit. The C=O bond is anti to the N—H bond and is also anti to the methyl­ene H atoms. Inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into supra­molecular chains.

Related literature

For preparation and characterisation of the compound, see: Pies et al. (1971 [triangle]), Gowda et al. (2006 [triangle]). For related structures, see: Gowda et al. (2008a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o949-scheme1.jpg

Experimental

Crystal data

  • C8H7Cl2NO
  • M r = 204.05
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o949-efi1.jpg
  • a = 4.897 (1) Å
  • b = 17.379 (3) Å
  • c = 21.484 (4) Å
  • V = 1828.4 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.66 mm−1
  • T = 299 K
  • 0.45 × 0.08 × 0.02 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.756, T max = 0.987
  • 10213 measured reflections
  • 3179 independent reflections
  • 1745 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.094
  • wR(F 2) = 0.103
  • S = 1.23
  • 3179 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1206 Friedel pairs
  • Flack parameter: 0.04 (13)

Data collection: CrysAlis CCD (Oxford Diffraction, 2004 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011660/tk2407sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011660/tk2407Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of a study of the effect of ring and side-chain substitutions on the solid-state geometry of aromatic amides (Gowda et al., 2008a, b, c), in the present work the structure of 2-chloro-N-(3-chlorophenyl)acetamide (I) has been determined. The N—H bond is anti to the meta-chloro substituent in the aromatic ring (Fig. 1), similar to that observed in N-(3-chlorophenyl)acetamide (Gowda et al., 2008a), but in contrast to the syn conformations observed with respect to the meta-methyl group in 2-chloro-N-(3-methylphenyl)acetamide (Gowda et al., 2008c) and with respect to both chloro substituents in 2-chloro-N-(2,3-dichlorophenyl)acetamide (Gowda et al., 2008b). Further, the C=O bond is not only anti to the N—H bond but also to the methylene-H-atoms. The asymmetric unit of the structure contains two molecules that are orthogonal to each other. The molecules in (I) are linked into infinite chains through intermolecular N1—H1···O2 and N2—H2—O1 hydrogen bonding (Table 1) as viewed down the a-axis (Fig. 2).

Experimental

Compound (I) was prepared according to the literature method (Gowda et al., 2006). The purity of (I) was checked by determining its melting point and characterised by recording its infrared, NMR and NQR spectra (Gowda et al., 2006 & Pies et al., 1971). Single crystals of (I) were obtained from an ethanolic solution held at room temperature.

Refinement

The H atoms were positioned with idealised geometry using a riding model with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 x Ueq(C).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I) viewed in projection down the a-axis, with N-H···O hydrogen bonding shown as dashed lines.

Crystal data

C8H7Cl2NOF(000) = 832
Mr = 204.05Dx = 1.483 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2170 reflections
a = 4.897 (1) Åθ = 2.2–27.3°
b = 17.379 (3) ŵ = 0.66 mm1
c = 21.484 (4) ÅT = 299 K
V = 1828.4 (6) Å3Needle, colourless
Z = 80.45 × 0.08 × 0.02 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector3179 independent reflections
Radiation source: fine-focus sealed tube1745 reflections with I > 2σ(I)
graphiteRint = 0.074
Rotation method data acquisition using ω and [var phi] scansθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)h = −5→5
Tmin = 0.756, Tmax = 0.987k = −20→20
10213 measured reflectionsl = −25→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.094H-atom parameters constrained
wR(F2) = 0.103w = 1/[σ2(Fo2) + (0.0084P)2 + 1.6742P] where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.005
3179 reflectionsΔρmax = 0.36 e Å3
217 parametersΔρmin = −0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1206 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.04 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.6906 (6)0.02452 (11)−0.05228 (9)0.1205 (10)
Cl2−0.0094 (4)0.03432 (10)0.27874 (9)0.0775 (6)
O10.3155 (10)0.0159 (2)0.16486 (19)0.0612 (14)
N10.5179 (11)0.1333 (3)0.1663 (2)0.0466 (14)
H1N0.53350.17410.18870.056*
C10.6654 (15)0.1331 (3)0.1102 (3)0.0429 (17)
C20.6148 (14)0.0817 (3)0.0628 (3)0.052 (2)
H20.48130.04410.06730.063*
C30.7641 (19)0.0868 (4)0.0088 (3)0.065 (2)
C40.9656 (17)0.1404 (5)0.0005 (4)0.071 (2)
H41.06760.1422−0.03600.086*
C51.0113 (16)0.1917 (5)0.0482 (4)0.076 (2)
H51.14420.22950.04360.091*
C60.8643 (15)0.1880 (4)0.1025 (3)0.059 (2)
H60.89960.22290.13430.071*
C70.3544 (15)0.0775 (4)0.1898 (3)0.0451 (18)
C80.2235 (15)0.1014 (3)0.2507 (3)0.062 (2)
H8A0.13100.15020.24490.074*
H8B0.36550.10890.28160.074*
Cl30.3476 (5)0.13531 (10)0.41715 (9)0.0882 (7)
Cl4−0.7058 (4)0.32439 (10)0.17867 (9)0.0819 (7)
O2−0.2983 (9)0.2490 (2)0.25851 (18)0.0523 (12)
N2−0.1818 (11)0.3561 (2)0.3135 (2)0.0484 (14)
H2N−0.22160.40410.31690.058*
C90.0161 (13)0.3283 (4)0.3558 (3)0.0400 (16)
C100.0721 (13)0.2514 (4)0.3645 (3)0.0468 (18)
H10−0.02430.21380.34300.056*
C110.2759 (15)0.2317 (4)0.4062 (3)0.0484 (19)
C120.4158 (14)0.2849 (4)0.4398 (3)0.058 (2)
H120.55170.27020.46760.069*
C130.3504 (17)0.3615 (4)0.4315 (3)0.069 (2)
H130.44080.39890.45470.083*
C140.1548 (16)0.3833 (4)0.3897 (3)0.057 (2)
H140.11500.43510.38410.068*
C15−0.3165 (14)0.3176 (4)0.2684 (3)0.0442 (16)
C16−0.4892 (14)0.3714 (3)0.2297 (3)0.0599 (19)
H16A−0.36970.40500.20610.072*
H16B−0.59730.40330.25730.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.221 (3)0.0728 (13)0.0674 (14)−0.0099 (18)0.0240 (19)−0.0174 (12)
Cl20.0703 (15)0.0686 (12)0.0935 (15)−0.0124 (13)0.0192 (14)0.0007 (12)
O10.089 (4)0.030 (2)0.064 (3)−0.017 (3)0.007 (3)−0.011 (2)
N10.060 (4)0.031 (3)0.049 (4)−0.009 (3)0.001 (3)−0.008 (3)
C10.051 (5)0.031 (4)0.046 (4)0.005 (4)−0.001 (4)0.000 (4)
C20.058 (6)0.041 (4)0.058 (5)0.005 (4)0.005 (4)0.006 (4)
C30.090 (7)0.044 (4)0.061 (5)0.005 (5)0.003 (5)0.008 (4)
C40.071 (6)0.083 (6)0.061 (6)0.019 (6)0.012 (5)0.013 (5)
C50.055 (6)0.094 (7)0.080 (6)−0.016 (5)0.007 (6)0.022 (6)
C60.047 (5)0.063 (5)0.069 (6)−0.011 (5)−0.015 (5)0.004 (4)
C70.050 (5)0.034 (4)0.051 (4)−0.001 (4)−0.012 (4)0.000 (4)
C80.079 (6)0.047 (4)0.059 (5)−0.008 (4)0.013 (5)−0.007 (3)
Cl30.125 (2)0.0597 (12)0.0799 (14)0.0279 (14)−0.0236 (14)0.0066 (11)
Cl40.0896 (16)0.0693 (12)0.0869 (14)0.0000 (13)−0.0394 (13)−0.0053 (11)
O20.061 (3)0.032 (2)0.064 (3)0.006 (3)−0.012 (3)−0.009 (2)
N20.056 (4)0.031 (3)0.058 (4)0.007 (3)−0.009 (3)−0.013 (3)
C90.037 (4)0.043 (4)0.040 (4)0.000 (4)−0.004 (4)−0.006 (4)
C100.053 (5)0.035 (4)0.052 (4)−0.003 (4)0.002 (4)−0.001 (3)
C110.055 (5)0.050 (4)0.040 (4)0.012 (4)0.004 (4)0.005 (3)
C120.049 (6)0.073 (5)0.051 (5)0.000 (4)−0.007 (4)−0.003 (4)
C130.079 (6)0.061 (5)0.066 (6)−0.007 (5)−0.011 (5)−0.016 (4)
C140.067 (6)0.049 (4)0.055 (5)0.007 (5)−0.009 (4)−0.006 (4)
C150.046 (4)0.040 (4)0.047 (4)0.010 (4)−0.004 (4)−0.001 (4)
C160.059 (5)0.050 (4)0.071 (5)−0.001 (4)−0.029 (5)−0.011 (4)

Geometric parameters (Å, °)

Cl1—C31.739 (7)Cl3—C111.728 (6)
Cl2—C81.738 (6)Cl4—C161.730 (6)
O1—C71.212 (6)O2—C151.215 (6)
N1—C71.354 (7)N2—C151.349 (7)
N1—C11.406 (7)N2—C91.415 (7)
N1—H1N0.8600N2—H2N0.8600
C1—C61.373 (8)C9—C101.376 (7)
C1—C21.376 (7)C9—C141.380 (8)
C2—C31.375 (8)C10—C111.384 (8)
C2—H20.9300C10—H100.9300
C3—C41.369 (9)C11—C121.359 (8)
C4—C51.376 (9)C12—C131.381 (8)
C4—H40.9300C12—H120.9300
C5—C61.373 (9)C13—C141.366 (8)
C5—H50.9300C13—H130.9300
C6—H60.9300C14—H140.9300
C7—C81.516 (8)C15—C161.510 (8)
C8—H8A0.9700C16—H16A0.9700
C8—H8B0.9700C16—H16B0.9700
C7—N1—C1128.4 (5)C15—N2—C9128.9 (5)
C7—N1—H1N115.8C15—N2—H2N115.6
C1—N1—H1N115.8C9—N2—H2N115.6
C6—C1—C2119.3 (6)C10—C9—C14120.2 (6)
C6—C1—N1117.8 (6)C10—C9—N2123.7 (6)
C2—C1—N1122.9 (7)C14—C9—N2116.1 (6)
C1—C2—C3119.1 (7)C9—C10—C11118.1 (6)
C1—C2—H2120.5C9—C10—H10120.9
C3—C2—H2120.5C11—C10—H10120.9
C4—C3—C2122.5 (7)C12—C11—C10122.6 (6)
C4—C3—Cl1118.3 (7)C12—C11—Cl3119.0 (6)
C2—C3—Cl1119.1 (7)C10—C11—Cl3118.3 (6)
C3—C4—C5117.4 (8)C11—C12—C13118.1 (7)
C3—C4—H4121.3C11—C12—H12121.0
C5—C4—H4121.3C13—C12—H12121.0
C6—C5—C4121.2 (8)C14—C13—C12120.9 (7)
C6—C5—H5119.4C14—C13—H13119.5
C4—C5—H5119.4C12—C13—H13119.5
C5—C6—C1120.4 (7)C13—C14—C9120.0 (7)
C5—C6—H6119.8C13—C14—H14120.0
C1—C6—H6119.8C9—C14—H14120.0
O1—C7—N1124.1 (6)O2—C15—N2125.2 (6)
O1—C7—C8123.8 (6)O2—C15—C16123.5 (6)
N1—C7—C8112.1 (5)N2—C15—C16111.3 (5)
C7—C8—Cl2113.2 (4)C15—C16—Cl4113.6 (4)
C7—C8—H8A108.9C15—C16—H16A108.8
Cl2—C8—H8A108.9Cl4—C16—H16A108.8
C7—C8—H8B108.9C15—C16—H16B108.8
Cl2—C8—H8B108.9Cl4—C16—H16B108.8
H8A—C8—H8B107.8H16A—C16—H16B107.7
C7—N1—C1—C6−165.6 (6)C15—N2—C9—C10−11.4 (10)
C7—N1—C1—C215.7 (10)C15—N2—C9—C14169.1 (6)
C6—C1—C2—C3−0.3 (9)C14—C9—C10—C11−2.2 (9)
N1—C1—C2—C3178.4 (6)N2—C9—C10—C11178.3 (5)
C1—C2—C3—C41.1 (10)C9—C10—C11—C121.9 (9)
C1—C2—C3—Cl1−177.3 (5)C9—C10—C11—Cl3−179.8 (5)
C2—C3—C4—C5−1.6 (11)C10—C11—C12—C13−0.1 (10)
Cl1—C3—C4—C5176.8 (6)Cl3—C11—C12—C13−178.4 (5)
C3—C4—C5—C61.3 (11)C11—C12—C13—C14−1.4 (11)
C4—C5—C6—C1−0.6 (11)C12—C13—C14—C91.1 (11)
C2—C1—C6—C50.0 (10)C10—C9—C14—C130.7 (10)
N1—C1—C6—C5−178.7 (6)N2—C9—C14—C13−179.7 (6)
C1—N1—C7—O11.8 (10)C9—N2—C15—O23.9 (11)
C1—N1—C7—C8−177.8 (6)C9—N2—C15—C16−174.2 (5)
O1—C7—C8—Cl2−4.6 (9)O2—C15—C16—Cl410.9 (9)
N1—C7—C8—Cl2175.0 (4)N2—C15—C16—Cl4−170.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.152.962 (6)157
N2—H2N···O1ii0.862.042.892 (6)174

Symmetry codes: (i) x+1, y, z; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2407).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o381. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o419. [PMC free article] [PubMed]
  • Gowda, B. T., Shilpa & Lakshmipathy, J. K. (2006). Z. Naturforsch. Teil A, 61, 595–599.
  • Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208. [PMC free article] [PubMed]
  • Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  • Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  • Pies, W., Rager, H. & Weiss, A. (1971). Org. Magn. Reson.3, 147–176.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography