PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o947.
Published online 2009 April 2. doi:  10.1107/S1600536809011763
PMCID: PMC2977648

2,4-Dichloro­phenyl benzoate

Abstract

The crystal structure of the title compound, C13H8Cl2O2, resembles those of 2,3-dichloro­phenyl benzoate, 2,4-dimethyl­phenyl benzoate and other aryl benzoates, with similar bond parameters. The plane of central –C(=O)—O– group is inclined at the angle of 9.1 (2)° with respect to the benzoate ring. The two aromatic rings make a dihedral angle of 47.8 (1)°. In the crystal structure there are no classical hydrogen bonds. The mol­ecules in the structure are packed into chains diagonally in the bc plane.

Related literature

For the preparation of the compound, see: Nayak & Gowda (2009 [triangle]); For related structures, see: Gowda et al. (2007 [triangle], 2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o947-scheme1.jpg

Experimental

Crystal data

  • C13H8Cl2O2
  • M r = 267.09
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o947-efi1.jpg
  • a = 3.9722 (1) Å
  • b = 11.9458 (3) Å
  • c = 24.9407 (5) Å
  • V = 1183.46 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.53 mm−1
  • T = 295 K
  • 0.47 × 0.11 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.751, T max = 0.943
  • 20045 measured reflections
  • 2202 independent reflections
  • 1961 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.059
  • S = 1.03
  • 2202 reflections
  • 160 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 861 Friedel pairs
  • Flack parameter: 0.02 (5)

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011763/bt2919sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011763/bt2919Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

In the present work, as a part of studying the substituent effects on the crystal structures of aryl benzoates (Gowda et al., 2007, 2008, 2009), the structure of 2,4-dichlorophenyl benzoate has been determined. The structure (Fig. 1) is similar to those of 2,3-dichlorophenylbenzoate (Gowda et al., 2007), 2,4-dimethylphenyl benzoate (Gowda et al., 2008) and other aryl benzoates (Gowda et al., 2009). The two aromatic rings make a dihedral angle of 47.8 (1)°. The plane of the –C(=O)–O– group is inclined at an angle of 9.1 (2)° to the benzoate ring. In the crystal structure, there are no classical hydrogen bonds. The molecules in the structure are packed into chains as viewed down the bc plane (Fig. 2).

Experimental

The title compound was prepared according to a literature method (Nayak & Gowda, 2009). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2009). Single crystals of the title compound were obtained by slow evaporation of its ethanol solution. The X-ray diffraction studies were made at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93 Å, except for H atoms bound to C4 and C5, which were subject to the restraint on the C—H distance (set to 0.95 (4) Å). This measure improved the anisotropic displacement parameters of the atoms C4, C5 and enabled to remove the alert_C regarding the Hirshfeld-test. All H atoms were refined with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
The packing of the title compound viewed down the a axis.

Crystal data

C13H8Cl2O2F(000) = 544
Mr = 267.09Dx = 1.499 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10923 reflections
a = 3.9722 (1) Åθ = 3.3–29.5°
b = 11.9458 (3) ŵ = 0.53 mm1
c = 24.9407 (5) ÅT = 295 K
V = 1183.46 (5) Å3Needle, colourless
Z = 40.47 × 0.11 × 0.10 mm

Data collection

Oxford Diffraction Xcalibur diffractomenter with a Ruby (Gemini Mo) detector2202 independent reflections
graphite1961 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.027
ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −4→4
Tmin = 0.751, Tmax = 0.943k = −14→14
20045 measured reflectionsl = −30→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059w = 1/[σ2(Fo2) + (0.0343P)2 + 0.0694P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2202 reflectionsΔρmax = 0.13 e Å3
160 parametersΔρmin = −0.15 e Å3
2 restraintsAbsolute structure: Flack (1983), 861 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4499 (4)0.34482 (14)0.11405 (6)0.0475 (4)
C20.5855 (4)0.32994 (13)0.16904 (6)0.0454 (4)
C30.7373 (5)0.41579 (15)0.19708 (7)0.0532 (4)
H30.76480.48560.18110.064*
C40.8484 (6)0.39790 (19)0.24887 (7)0.0649 (5)
H40.947 (5)0.4659 (16)0.2689 (8)0.078*
C50.8127 (6)0.29517 (19)0.27219 (8)0.0671 (5)
H50.884 (6)0.2847 (17)0.3063 (8)0.081*
C60.6657 (6)0.20918 (18)0.24438 (8)0.0709 (6)
H60.64370.13930.26040.085*
C70.5496 (5)0.22556 (15)0.19272 (7)0.0603 (5)
H70.44850.16720.1740.072*
C80.4313 (4)0.47198 (13)0.04142 (6)0.0439 (4)
C90.2560 (4)0.56988 (13)0.03415 (6)0.0436 (4)
C100.1619 (4)0.60433 (13)−0.01650 (6)0.0466 (4)
H100.04630.6712−0.02150.056*
C110.2437 (4)0.53692 (13)−0.05937 (6)0.0457 (4)
C120.4179 (4)0.43887 (13)−0.05300 (6)0.0489 (4)
H120.47040.3947−0.08250.059*
C130.5148 (4)0.40651 (14)−0.00208 (7)0.0489 (4)
H130.6360.34070.00280.059*
O10.5392 (3)0.44515 (9)0.09308 (4)0.0522 (3)
O20.2813 (4)0.27886 (11)0.09054 (5)0.0749 (4)
Cl10.14820 (14)0.65271 (4)0.088572 (17)0.06409 (15)
Cl20.11922 (13)0.57737 (4)−0.123305 (17)0.06442 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0547 (10)0.0419 (8)0.0460 (8)−0.0075 (9)0.0057 (8)−0.0025 (7)
C20.0474 (9)0.0440 (9)0.0450 (8)−0.0005 (8)0.0081 (7)−0.0007 (7)
C30.0588 (10)0.0515 (10)0.0493 (9)−0.0038 (9)0.0020 (8)0.0003 (8)
C40.0657 (12)0.0814 (14)0.0477 (10)−0.0034 (12)−0.0026 (9)−0.0054 (9)
C50.0699 (13)0.0840 (14)0.0474 (10)0.0095 (12)0.0021 (10)0.0095 (11)
C60.0816 (14)0.0657 (12)0.0654 (12)0.0070 (13)0.0145 (11)0.0207 (10)
C70.0742 (13)0.0497 (10)0.0571 (11)−0.0025 (10)0.0093 (10)0.0030 (8)
C80.0467 (9)0.0394 (8)0.0455 (8)−0.0080 (8)−0.0019 (7)0.0002 (6)
C90.0466 (9)0.0371 (8)0.0470 (9)−0.0076 (7)0.0047 (7)−0.0072 (7)
C100.0479 (9)0.0401 (8)0.0517 (9)0.0020 (8)0.0019 (8)−0.0005 (7)
C110.0460 (9)0.0485 (9)0.0425 (8)−0.0045 (8)0.0005 (7)0.0036 (7)
C120.0518 (10)0.0482 (9)0.0468 (9)0.0031 (9)0.0063 (8)−0.0060 (7)
C130.0516 (9)0.0411 (9)0.0541 (9)0.0043 (8)0.0012 (8)0.0009 (7)
O10.0667 (8)0.0424 (6)0.0475 (6)−0.0113 (6)−0.0117 (6)0.0031 (5)
O20.1069 (11)0.0634 (8)0.0546 (7)−0.0411 (8)−0.0074 (8)−0.0019 (6)
Cl10.0868 (3)0.0509 (2)0.0545 (2)−0.0017 (2)0.0102 (2)−0.0149 (2)
Cl20.0754 (3)0.0715 (3)0.0464 (2)0.0074 (3)−0.0040 (2)0.0055 (2)

Geometric parameters (Å, °)

C1—O21.189 (2)C7—H70.93
C1—O11.355 (2)C8—C91.373 (2)
C1—C21.484 (2)C8—C131.378 (2)
C2—C31.380 (2)C8—O11.3951 (19)
C2—C71.387 (2)C9—C101.380 (2)
C3—C41.382 (3)C9—Cl11.7334 (15)
C3—H30.93C10—C111.378 (2)
C4—C51.365 (3)C10—H100.93
C4—H41.031 (19)C11—C121.370 (2)
C5—C61.370 (3)C11—Cl21.7380 (16)
C5—H50.905 (19)C12—C131.382 (2)
C6—C71.382 (3)C12—H120.93
C6—H60.93C13—H130.93
O2—C1—O1122.91 (15)C2—C7—H7120.3
O2—C1—C2125.52 (15)C9—C8—C13120.10 (14)
O1—C1—C2111.57 (13)C9—C8—O1118.25 (13)
C3—C2—C7119.82 (16)C13—C8—O1121.53 (14)
C3—C2—C1122.54 (14)C8—C9—C10120.81 (14)
C7—C2—C1117.63 (15)C8—C9—Cl1120.54 (12)
C2—C3—C4119.89 (17)C10—C9—Cl1118.65 (13)
C2—C3—H3120.1C11—C10—C9118.18 (15)
C4—C3—H3120.1C11—C10—H10120.9
C5—C4—C3120.3 (2)C9—C10—H10120.9
C5—C4—H4122.8 (11)C12—C11—C10121.94 (15)
C3—C4—H4116.8 (11)C12—C11—Cl2119.22 (13)
C4—C5—C6120.16 (19)C10—C11—Cl2118.85 (12)
C4—C5—H5119.4 (14)C11—C12—C13119.11 (15)
C6—C5—H5120.4 (14)C11—C12—H12120.4
C5—C6—C7120.52 (18)C13—C12—H12120.4
C5—C6—H6119.7C8—C13—C12119.85 (16)
C7—C6—H6119.7C8—C13—H13120.1
C6—C7—C2119.33 (19)C12—C13—H13120.1
C6—C7—H7120.3C1—O1—C8118.64 (12)
O2—C1—C2—C3−170.23 (18)O1—C8—C9—Cl1−4.3 (2)
O1—C1—C2—C39.2 (2)C8—C9—C10—C111.0 (2)
O2—C1—C2—C78.5 (3)Cl1—C9—C10—C11−178.90 (13)
O1—C1—C2—C7−172.04 (15)C9—C10—C11—C12−0.9 (2)
C7—C2—C3—C4−1.0 (3)C9—C10—C11—Cl2178.61 (13)
C1—C2—C3—C4177.77 (17)C10—C11—C12—C130.0 (2)
C2—C3—C4—C50.9 (3)Cl2—C11—C12—C13−179.58 (13)
C3—C4—C5—C6−0.2 (3)C9—C8—C13—C12−0.8 (3)
C4—C5—C6—C7−0.5 (3)O1—C8—C13—C12−176.67 (15)
C5—C6—C7—C20.4 (3)C11—C12—C13—C80.9 (3)
C3—C2—C7—C60.3 (3)O2—C1—O1—C8−0.6 (3)
C1—C2—C7—C6−178.49 (18)C2—C1—O1—C8179.94 (14)
C13—C8—C9—C10−0.2 (2)C9—C8—O1—C1125.12 (16)
O1—C8—C9—C10175.80 (14)C13—C8—O1—C1−59.0 (2)
C13—C8—C9—Cl1179.76 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2919).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o4286.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o915. [PMC free article] [PubMed]
  • Nayak, R. & Gowda, B. T. (2009). Z. Naturforsch. Teil A, 63 In preparation.
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon,England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography