PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o946.
Published online 2009 April 2. doi:  10.1107/S1600536809011672
PMCID: PMC2977647

1,5-Bis(4-nitro­phen­oxy)penta­ne

Abstract

The title compound, C17H18N2O6, crystallizes with two mol­ecules in the asymmetric unit. In both molecules, one of the C—C bonds of the penta­methyl­ene chain connecting the two aromatic rings is in a trans conformation and another displays a gauche conformation. The aromatic rings within each mol­ecule are nearly coplanar [dihedral angles = 3.36 (9) and 4.50 (9)°] and the nitro groups are twisted slightly out of the planes of their attached rings [dihedral angles = 8.16 (3)/6.6 (2) and 4.9 (4)/3.8 (3)°].

Related literature

For general background and synthetic aspects of thermally stable polymers, see: Critchley et al. (1983 [triangle]); Schab-Balcerzak et al. (2002 [triangle]); Hsiao & Leu (2004 [triangle]); Hsiao et al. (2004 [triangle]); Mehdipour-Ataei (2005 [triangle]); Mehdipour-Ataei et al. (2006 [triangle]); Shao et al. (2007 [triangle]); Faghihi (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o946-scheme1.jpg

Experimental

Crystal data

  • C17H18N2O6
  • M r = 346.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o946-efi1.jpg
  • a = 10.6032 (8) Å
  • b = 10.7227 (9) Å
  • c = 16.3124 (14) Å
  • α = 95.603 (7)°
  • β = 105.718 (6)°
  • γ = 110.572 (6)°
  • V = 1632.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 173 K
  • 0.27 × 0.24 × 0.19 mm

Data collection

  • Stoe IPDSII two-circle diffractometer
  • Absorption correction: none
  • 27840 measured reflections
  • 6109 independent reflections
  • 4466 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.101
  • S = 0.95
  • 6109 reflections
  • 452 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011672/tk2408sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011672/tk2408Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Thermally stable polymers, such as polyamides and polyimides, are an important class of high-performance polymers which are currently receiving considerable interest due to the increasing demands for high-temperature polymers as replacements for metals or ceramics in the automotive, aerospace and microelectronics industries (Critchley et al., 1983). In general, these polymers possess good chemical resistance, low flammability and excellent mechanical properties besides their extraordinary thermal stability (Mehdipour-Ataei et al., 2006). However, they encounter processing difficulties due to their limited solubility in organic solvents and high glass transition (Tg) or melting temperatures (Tm) caused by chain stiffness and intermolecular hydrogen bonding (Hsiao and Leu, 2004). Therefore, much research in the area of thermally-stable polymers in recent years has focused on improving their processability and solubility through the design and synthesis of new monomers (Faghihi, 2008). Aromatic diamines are valuable building blocks for the preparation of thermally-stable polymers which are conventionally used to produce desired alterations in the chemical nature of the macro chain (Mehdipour-Ataei, 2005). Ether linkages are the most popular flexible linkages introduced in the polymer backbone by structural modification of aromatic diamines (Shao et al., 2007). It has been generally recognized that the aryl-ether linkage imparts properties such as better solubility and melt processing characteristics (Hsiao et al., 2004). Moreover, the long flexible aliphatic chains can also be incorporated into the aromatic backbone which effectively disrupt the intermolecular interactions between the aromatic moiety responsible for their high glass transition (Tg) temperatures (Schab-Balcerzak et al., 2002). The title dinitro compound, (I), is a precursor for aromatic diamines and was synthesized as an attempt to design and prepare new monomers for processable high performance polymers, in which the methylene spacers are present between the aromatic rings connected by ether moiety.

Compound (I) crystallizes with two molecules in the asymmetric unit, Fig. 1. One C—C bond of the methylene chain connecting the two aromatic rings is in a trans conformation whereas aoother displays a gauche conformation so that the molecule has an overall anti-conformation of the aromatic rings. The aromatic rings in a molecule are nearly coplanar [dihedral angles: 3.36 (9)° and 4.50 (9)°] and the nitro groups are are not significantly twisted out of the plane of the ring to which they are attached [dihedral angles: 8.16 (3)°, 6.6 (2)°; 4.9 (4)° and 3.8 (3)°].

Experimental

A three-necked round bottom flask equipped with Dean-Stark trap, thermometer, magnetic stirrer and nitrogen inlet was charged with a suspension of 1,5-pentane diol (2 ml, 19.1 mmol) and anhydrous potassium carbonate (5.3 g, 38.2 mmol) in a mixture of N, N'-dimethyl formamide (DMF) (60 ml) and toluene (20 ml), and refluxed (at 403–408 K) for 2 h for azeotropic removal of water. After cooling to 333–343 K, 1-fluoro-4-nitro benzene (4.05 ml, 38.2 mmol) was added and the mixture was again refluxed for 6 h. Subsequently, some toluene was distilled off and the resulting mixture was poured into 500 ml of chilled water after cooling to room temperature. The crude product was filtered as a yellow solid mass, washed thoroughly with water, dissolved in ethanol and set aside for crystallization. Yield 81%, m.p. 370 K. Calculated C, 58.96, H, 5.24, N, 8.09. C17H18N2O6 requires C, 58.70, H, 5.20, N, 7.99. IR (KBr pellet) in cm-1: 1581 (aromatic C=C), 1511 and 1341 (NO2), 1242 (C=O-C), 2925 (C—H aliphatic), 3078 (C—H aromatic). 1H NMR (CDCl3) δ: 8.19 (d, 4H, J = 3.1 Hz), 6.98 (d, 4H, J = 3.1 Hz), 4.11 (m, 4H), 1.71 (m, 4H), 1.3 (m, 2H) p.p.m. 13C NMR (CDCl3) δ: 164.06 (2 C, C4), 141.38 (2 C, C1), 125.96 (4 C, C2,2'), 114.38 (4 C, C3,3'), 68.51 (2 C, C5), 28.73 (2 C, C6), 22.64 (1 C, C7) p.p.m.

Refinement

All H atoms could be located by difference Fourier synthesis and refined using a riding model with C—H(aromatic) = 0.95 Å or C—H(methylene) = 0.99 Å, and with U(H) = 1.2 Ueq(C).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C17H18N2O6Z = 4
Mr = 346.33F(000) = 728
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6032 (8) ÅCell parameters from 22239 reflections
b = 10.7227 (9) Åθ = 3.6–25.8°
c = 16.3124 (14) ŵ = 0.11 mm1
α = 95.603 (7)°T = 173 K
β = 105.718 (6)°Block, yellow
γ = 110.572 (6)°0.27 × 0.24 × 0.19 mm
V = 1632.7 (2) Å3

Data collection

Stoe IPDSII two-circle diffractometer4466 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
graphiteθmax = 25.7°, θmin = 3.6°
ω scansh = −12→12
27840 measured reflectionsk = −13→13
6109 independent reflectionsl = −19→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.101w = 1/[σ2(Fo2) + (0.0621P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
6109 reflectionsΔρmax = 0.27 e Å3
452 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.65809 (14)0.79078 (14)0.53323 (9)0.0288 (3)
N2−0.02055 (14)−0.37072 (14)−0.31249 (9)0.0295 (3)
O10.57451 (11)0.32831 (11)0.30135 (7)0.0286 (3)
O20.31698 (11)0.12186 (11)−0.07325 (7)0.0287 (3)
O30.77971 (13)0.85858 (13)0.58276 (9)0.0494 (4)
O40.55492 (13)0.81599 (13)0.53699 (8)0.0406 (3)
O50.03989 (14)−0.43169 (14)−0.34317 (10)0.0530 (4)
O6−0.15085 (12)−0.41577 (13)−0.33129 (9)0.0484 (4)
C10.43378 (17)0.22437 (16)0.25233 (11)0.0286 (4)
H1A0.37280.21060.28990.034*
H1B0.44260.13710.23630.034*
C20.36236 (16)0.26221 (16)0.17000 (10)0.0261 (3)
H2A0.34620.34520.18650.031*
H2B0.26820.18750.13890.031*
C30.45014 (16)0.28805 (16)0.10867 (10)0.0255 (3)
H3A0.46560.20470.09190.031*
H3B0.54470.36210.14010.031*
C40.37983 (18)0.32734 (16)0.02630 (11)0.0282 (4)
H4A0.34530.39750.04290.034*
H4B0.45240.3686−0.00140.034*
C50.25609 (17)0.20869 (16)−0.03978 (10)0.0272 (4)
H5A0.18770.1581−0.01180.033*
H5B0.20540.2416−0.08750.033*
C110.58649 (16)0.44199 (16)0.35365 (10)0.0238 (3)
C120.72609 (16)0.53377 (16)0.40132 (10)0.0266 (4)
H120.80440.51650.39340.032*
C130.75079 (16)0.64867 (16)0.45955 (10)0.0262 (4)
H130.84530.71000.49260.031*
C140.63441 (16)0.67294 (16)0.46883 (10)0.0230 (3)
C150.49555 (16)0.58530 (16)0.42069 (10)0.0251 (3)
H150.41790.60500.42750.030*
C160.47045 (16)0.46922 (17)0.36281 (10)0.0256 (3)
H160.37570.40860.32970.031*
C210.22745 (16)0.00289 (15)−0.13106 (10)0.0221 (3)
C220.29377 (16)−0.07489 (16)−0.16129 (10)0.0251 (3)
H220.3947−0.0437−0.14050.030*
C230.21347 (16)−0.19676 (16)−0.22117 (10)0.0244 (3)
H230.2582−0.2497−0.24210.029*
C240.06549 (16)−0.24066 (15)−0.25036 (10)0.0232 (3)
C25−0.00205 (16)−0.16517 (16)−0.22074 (10)0.0253 (3)
H25−0.1031−0.1972−0.24150.030*
C260.07830 (16)−0.04292 (16)−0.16082 (10)0.0246 (3)
H260.03300.0095−0.14000.029*
N1A0.54060 (16)−0.31658 (15)0.21094 (10)0.0346 (3)
N2A1.20328 (15)0.86604 (14)1.04941 (9)0.0327 (3)
O1A0.87307 (12)0.17493 (12)0.45211 (8)0.0336 (3)
O2A1.01166 (12)0.36424 (12)0.82421 (8)0.0339 (3)
O3A0.60452 (16)−0.37664 (13)0.18267 (9)0.0492 (4)
O4A0.40930 (14)−0.35813 (14)0.18648 (10)0.0552 (4)
O5A1.33125 (14)0.92314 (13)1.09057 (10)0.0515 (4)
O6A1.11687 (14)0.91610 (13)1.05638 (9)0.0468 (3)
C1A0.81597 (19)0.26143 (18)0.49024 (11)0.0357 (4)
H1A10.73130.26080.44540.043*
H1A20.88840.35620.50940.043*
C2A0.77413 (18)0.21537 (18)0.56708 (11)0.0330 (4)
H2A10.69130.12670.54600.040*
H2A20.74410.28220.59380.040*
C3A0.89405 (17)0.20015 (17)0.63675 (11)0.0310 (4)
H3A10.97960.28670.65490.037*
H3A20.91900.12790.61150.037*
C4A0.85264 (19)0.16410 (17)0.71675 (11)0.0353 (4)
H4A10.75400.09420.69730.042*
H4A20.91640.12420.74960.042*
C5A0.86172 (17)0.28602 (17)0.77660 (11)0.0314 (4)
H5A10.82040.34190.74230.038*
H5A20.80870.25600.81740.038*
C11A0.78285 (16)0.05361 (16)0.39709 (10)0.0258 (3)
C12A0.85049 (17)−0.02265 (16)0.36651 (11)0.0277 (4)
H12A0.95150.00950.38750.033*
C13A0.77170 (17)−0.14412 (16)0.30615 (11)0.0275 (4)
H13A0.8176−0.19570.28510.033*
C14A0.62403 (16)−0.18964 (16)0.27669 (10)0.0263 (4)
C15A0.55471 (17)−0.11749 (17)0.30825 (11)0.0301 (4)
H15A0.4535−0.15180.28850.036*
C16A0.63379 (17)0.00471 (17)0.36867 (11)0.0297 (4)
H16A0.58740.05480.39060.036*
C21A1.04962 (17)0.48516 (16)0.87813 (10)0.0269 (4)
C22A1.19642 (17)0.55583 (17)0.92204 (11)0.0288 (4)
H22A1.26110.51760.91270.035*
C23A1.24742 (17)0.67976 (17)0.97833 (11)0.0291 (4)
H23A1.34670.72741.00830.035*
C24A1.15071 (17)0.73425 (16)0.99063 (10)0.0266 (3)
C25A1.00507 (17)0.66522 (17)0.94794 (11)0.0289 (4)
H25A0.94090.70390.95740.035*
C26A0.95370 (17)0.54025 (17)0.89175 (11)0.0286 (4)
H26A0.85420.49230.86270.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0323 (8)0.0235 (7)0.0290 (8)0.0099 (6)0.0103 (6)0.0016 (6)
N20.0262 (7)0.0258 (7)0.0340 (8)0.0088 (6)0.0099 (6)0.0003 (6)
O10.0272 (6)0.0306 (6)0.0252 (6)0.0140 (5)0.0044 (5)−0.0038 (5)
O20.0264 (6)0.0260 (6)0.0296 (6)0.0111 (5)0.0053 (5)−0.0032 (5)
O30.0326 (7)0.0397 (8)0.0539 (9)0.0042 (6)0.0039 (6)−0.0188 (7)
O40.0407 (7)0.0421 (8)0.0426 (8)0.0238 (6)0.0135 (6)−0.0027 (6)
O50.0361 (7)0.0392 (8)0.0727 (10)0.0107 (6)0.0185 (7)−0.0225 (7)
O60.0221 (7)0.0429 (8)0.0631 (9)0.0053 (6)0.0068 (6)−0.0153 (7)
C10.0294 (8)0.0233 (8)0.0276 (9)0.0072 (7)0.0075 (7)−0.0012 (7)
C20.0243 (8)0.0261 (8)0.0236 (8)0.0085 (7)0.0057 (6)−0.0018 (7)
C30.0239 (8)0.0241 (8)0.0247 (8)0.0079 (6)0.0058 (6)0.0008 (7)
C40.0340 (9)0.0214 (8)0.0288 (9)0.0111 (7)0.0104 (7)0.0035 (7)
C50.0320 (9)0.0259 (8)0.0255 (9)0.0157 (7)0.0076 (7)0.0020 (7)
C110.0280 (8)0.0255 (8)0.0194 (8)0.0131 (7)0.0072 (6)0.0034 (7)
C120.0212 (8)0.0306 (9)0.0304 (9)0.0128 (7)0.0093 (7)0.0056 (7)
C130.0189 (8)0.0257 (8)0.0279 (9)0.0050 (6)0.0044 (6)0.0025 (7)
C140.0257 (8)0.0231 (8)0.0215 (8)0.0105 (6)0.0086 (6)0.0050 (6)
C150.0219 (8)0.0297 (9)0.0256 (9)0.0127 (7)0.0082 (7)0.0042 (7)
C160.0207 (8)0.0304 (9)0.0220 (8)0.0093 (7)0.0045 (6)0.0001 (7)
C210.0242 (8)0.0215 (8)0.0186 (8)0.0079 (6)0.0051 (6)0.0045 (6)
C220.0191 (7)0.0288 (9)0.0280 (9)0.0108 (7)0.0073 (6)0.0049 (7)
C230.0250 (8)0.0254 (8)0.0278 (9)0.0139 (7)0.0111 (7)0.0054 (7)
C240.0233 (8)0.0220 (8)0.0224 (8)0.0067 (6)0.0083 (6)0.0026 (6)
C250.0203 (8)0.0285 (9)0.0264 (8)0.0093 (7)0.0077 (6)0.0042 (7)
C260.0267 (8)0.0276 (9)0.0264 (8)0.0159 (7)0.0122 (7)0.0066 (7)
N1A0.0377 (9)0.0278 (8)0.0303 (8)0.0076 (7)0.0062 (7)0.0052 (6)
N2A0.0353 (8)0.0273 (8)0.0326 (8)0.0078 (7)0.0129 (7)0.0060 (6)
O1A0.0293 (6)0.0302 (6)0.0327 (7)0.0085 (5)0.0057 (5)−0.0063 (5)
O2A0.0305 (6)0.0305 (6)0.0343 (7)0.0116 (5)0.0042 (5)−0.0009 (5)
O3A0.0594 (9)0.0338 (7)0.0463 (8)0.0136 (7)0.0161 (7)−0.0056 (6)
O4A0.0314 (7)0.0448 (8)0.0603 (9)0.0009 (6)−0.0041 (6)−0.0088 (7)
O5A0.0342 (7)0.0367 (8)0.0612 (9)0.0012 (6)0.0048 (7)−0.0081 (7)
O6A0.0459 (8)0.0386 (8)0.0546 (9)0.0169 (6)0.0185 (7)−0.0028 (6)
C1A0.0415 (10)0.0278 (9)0.0338 (10)0.0175 (8)0.0041 (8)−0.0012 (8)
C2A0.0326 (9)0.0347 (10)0.0302 (9)0.0197 (8)0.0027 (7)−0.0027 (8)
C3A0.0301 (9)0.0284 (9)0.0323 (9)0.0157 (7)0.0035 (7)−0.0006 (7)
C4A0.0377 (10)0.0270 (9)0.0356 (10)0.0130 (8)0.0035 (8)0.0054 (8)
C5A0.0299 (9)0.0299 (9)0.0288 (9)0.0087 (7)0.0056 (7)0.0044 (7)
C11A0.0248 (8)0.0267 (9)0.0229 (8)0.0082 (7)0.0062 (7)0.0046 (7)
C12A0.0217 (8)0.0303 (9)0.0295 (9)0.0102 (7)0.0060 (7)0.0063 (7)
C13A0.0286 (8)0.0262 (9)0.0299 (9)0.0132 (7)0.0099 (7)0.0054 (7)
C14A0.0287 (8)0.0218 (8)0.0230 (8)0.0056 (7)0.0058 (7)0.0047 (7)
C15A0.0203 (8)0.0361 (10)0.0303 (9)0.0090 (7)0.0061 (7)0.0054 (8)
C16A0.0260 (8)0.0358 (9)0.0285 (9)0.0145 (7)0.0092 (7)0.0024 (7)
C21A0.0314 (9)0.0261 (9)0.0239 (8)0.0112 (7)0.0095 (7)0.0081 (7)
C22A0.0263 (8)0.0299 (9)0.0333 (9)0.0131 (7)0.0107 (7)0.0099 (8)
C23A0.0240 (8)0.0301 (9)0.0307 (9)0.0072 (7)0.0086 (7)0.0095 (7)
C24A0.0279 (8)0.0256 (8)0.0250 (8)0.0071 (7)0.0102 (7)0.0083 (7)
C25A0.0290 (9)0.0320 (9)0.0292 (9)0.0137 (7)0.0118 (7)0.0085 (7)
C26A0.0221 (8)0.0324 (9)0.0282 (9)0.0089 (7)0.0059 (7)0.0065 (7)

Geometric parameters (Å, °)

N1—O31.2273 (18)N1A—O3A1.227 (2)
N1—O41.2306 (17)N1A—O4A1.2347 (19)
N1—C141.462 (2)N1A—C14A1.463 (2)
N2—O51.2217 (18)N2A—O5A1.2285 (18)
N2—O61.2283 (17)N2A—O6A1.2372 (18)
N2—C241.461 (2)N2A—C24A1.456 (2)
O1—C111.3635 (19)O1A—C11A1.3583 (19)
O1—C11.4556 (19)O1A—C1A1.449 (2)
O2—C211.3591 (18)O2A—C21A1.355 (2)
O2—C51.4477 (18)O2A—C5A1.4495 (19)
C1—C21.521 (2)C1A—C2A1.510 (3)
C1—H1A0.9900C1A—H1A10.9900
C1—H1B0.9900C1A—H1A20.9900
C2—C31.524 (2)C2A—C3A1.528 (2)
C2—H2A0.9900C2A—H2A10.9900
C2—H2B0.9900C2A—H2A20.9900
C3—C41.526 (2)C3A—C4A1.528 (2)
C3—H3A0.9900C3A—H3A10.9900
C3—H3B0.9900C3A—H3A20.9900
C4—C51.515 (2)C4A—C5A1.511 (2)
C4—H4A0.9900C4A—H4A10.9900
C4—H4B0.9900C4A—H4A20.9900
C5—H5A0.9900C5A—H5A10.9900
C5—H5B0.9900C5A—H5A20.9900
C11—C161.402 (2)C11A—C12A1.399 (2)
C11—C121.403 (2)C11A—C16A1.400 (2)
C12—C131.378 (2)C12A—C13A1.380 (2)
C12—H120.9500C12A—H12A0.9500
C13—C141.390 (2)C13A—C14A1.389 (2)
C13—H130.9500C13A—H13A0.9500
C14—C151.387 (2)C14A—C15A1.390 (2)
C15—C161.383 (2)C15A—C16A1.385 (2)
C15—H150.9500C15A—H15A0.9500
C16—H160.9500C16A—H16A0.9500
C21—C221.397 (2)C21A—C26A1.397 (2)
C21—C261.403 (2)C21A—C22A1.404 (2)
C22—C231.380 (2)C22A—C23A1.374 (2)
C22—H220.9500C22A—H22A0.9500
C23—C241.394 (2)C23A—C24A1.394 (2)
C23—H230.9500C23A—H23A0.9500
C24—C251.386 (2)C24A—C25A1.390 (2)
C25—C261.383 (2)C25A—C26A1.382 (2)
C25—H250.9500C25A—H25A0.9500
C26—H260.9500C26A—H26A0.9500
O3—N1—O4122.67 (14)O3A—N1A—O4A123.12 (15)
O3—N1—C14118.57 (13)O3A—N1A—C14A118.39 (14)
O4—N1—C14118.73 (13)O4A—N1A—C14A118.49 (15)
O5—N2—O6122.30 (14)O5A—N2A—O6A122.39 (15)
O5—N2—C24118.74 (13)O5A—N2A—C24A119.03 (14)
O6—N2—C24118.94 (13)O6A—N2A—C24A118.58 (14)
C11—O1—C1119.62 (12)C11A—O1A—C1A119.74 (12)
C21—O2—C5118.52 (12)C21A—O2A—C5A118.39 (13)
O1—C1—C2112.48 (13)O1A—C1A—C2A112.19 (13)
O1—C1—H1A109.1O1A—C1A—H1A1109.2
C2—C1—H1A109.1C2A—C1A—H1A1109.2
O1—C1—H1B109.1O1A—C1A—H1A2109.2
C2—C1—H1B109.1C2A—C1A—H1A2109.2
H1A—C1—H1B107.8H1A1—C1A—H1A2107.9
C1—C2—C3112.89 (13)C1A—C2A—C3A113.39 (14)
C1—C2—H2A109.0C1A—C2A—H2A1108.9
C3—C2—H2A109.0C3A—C2A—H2A1108.9
C1—C2—H2B109.0C1A—C2A—H2A2108.9
C3—C2—H2B109.0C3A—C2A—H2A2108.9
H2A—C2—H2B107.8H2A1—C2A—H2A2107.7
C2—C3—C4113.21 (13)C2A—C3A—C4A112.27 (14)
C2—C3—H3A108.9C2A—C3A—H3A1109.1
C4—C3—H3A108.9C4A—C3A—H3A1109.1
C2—C3—H3B108.9C2A—C3A—H3A2109.1
C4—C3—H3B108.9C4A—C3A—H3A2109.1
H3A—C3—H3B107.7H3A1—C3A—H3A2107.9
C5—C4—C3113.82 (13)C5A—C4A—C3A112.77 (14)
C5—C4—H4A108.8C5A—C4A—H4A1109.0
C3—C4—H4A108.8C3A—C4A—H4A1109.0
C5—C4—H4B108.8C5A—C4A—H4A2109.0
C3—C4—H4B108.8C3A—C4A—H4A2109.0
H4A—C4—H4B107.7H4A1—C4A—H4A2107.8
O2—C5—C4106.26 (12)O2A—C5A—C4A106.70 (13)
O2—C5—H5A110.5O2A—C5A—H5A1110.4
C4—C5—H5A110.5C4A—C5A—H5A1110.4
O2—C5—H5B110.5O2A—C5A—H5A2110.4
C4—C5—H5B110.5C4A—C5A—H5A2110.4
H5A—C5—H5B108.7H5A1—C5A—H5A2108.6
O1—C11—C16124.34 (14)O1A—C11A—C12A114.50 (13)
O1—C11—C12115.71 (13)O1A—C11A—C16A125.41 (15)
C16—C11—C12119.94 (14)C12A—C11A—C16A120.06 (15)
C13—C12—C11120.69 (14)C13A—C12A—C11A120.56 (15)
C13—C12—H12119.7C13A—C12A—H12A119.7
C11—C12—H12119.7C11A—C12A—H12A119.7
C12—C13—C14118.57 (15)C12A—C13A—C14A118.78 (15)
C12—C13—H13120.7C12A—C13A—H13A120.6
C14—C13—H13120.7C14A—C13A—H13A120.6
C15—C14—C13121.66 (15)C13A—C14A—C15A121.51 (15)
C15—C14—N1118.87 (13)C13A—C14A—N1A118.80 (15)
C13—C14—N1119.42 (14)C15A—C14A—N1A119.69 (14)
C16—C15—C14119.87 (14)C16A—C15A—C14A119.71 (14)
C16—C15—H15120.1C16A—C15A—H15A120.1
C14—C15—H15120.1C14A—C15A—H15A120.1
C15—C16—C11119.23 (15)C15A—C16A—C11A119.33 (15)
C15—C16—H16120.4C15A—C16A—H16A120.3
C11—C16—H16120.4C11A—C16A—H16A120.3
O2—C21—C22115.35 (13)O2A—C21A—C26A124.47 (15)
O2—C21—C26124.43 (14)O2A—C21A—C22A115.47 (14)
C22—C21—C26120.22 (14)C26A—C21A—C22A120.06 (16)
C23—C22—C21120.40 (14)C23A—C22A—C21A120.62 (15)
C23—C22—H22119.8C23A—C22A—H22A119.7
C21—C22—H22119.8C21A—C22A—H22A119.7
C22—C23—C24118.72 (14)C22A—C23A—C24A118.73 (15)
C22—C23—H23120.6C22A—C23A—H23A120.6
C24—C23—H23120.6C24A—C23A—H23A120.6
C25—C24—C23121.64 (14)C25A—C24A—C23A121.31 (16)
C25—C24—N2119.22 (13)C25A—C24A—N2A119.34 (15)
C23—C24—N2119.13 (14)C23A—C24A—N2A119.36 (14)
C26—C25—C24119.71 (14)C26A—C25A—C24A119.96 (15)
C26—C25—H25120.1C26A—C25A—H25A120.0
C24—C25—H25120.1C24A—C25A—H25A120.0
C25—C26—C21119.31 (14)C25A—C26A—C21A119.31 (15)
C25—C26—H26120.3C25A—C26A—H26A120.3
C21—C26—H26120.3C21A—C26A—H26A120.3
C11—O1—C1—C279.68 (17)C11A—O1A—C1A—C2A79.87 (18)
O1—C1—C2—C357.73 (17)O1A—C1A—C2A—C3A53.61 (19)
C1—C2—C3—C4−179.48 (13)C1A—C2A—C3A—C4A175.62 (14)
C2—C3—C4—C5−75.13 (17)C2A—C3A—C4A—C5A−78.46 (18)
C21—O2—C5—C4176.62 (12)C21A—O2A—C5A—C4A175.20 (13)
C3—C4—C5—O2−68.71 (17)C3A—C4A—C5A—O2A−76.49 (16)
C1—O1—C11—C16−1.6 (2)C1A—O1A—C11A—C12A−178.18 (14)
C1—O1—C11—C12177.31 (13)C1A—O1A—C11A—C16A3.7 (2)
O1—C11—C12—C13−176.71 (14)O1A—C11A—C12A—C13A−176.12 (14)
C16—C11—C12—C132.2 (2)C16A—C11A—C12A—C13A2.1 (2)
C11—C12—C13—C14−1.2 (2)C11A—C12A—C13A—C14A−0.4 (2)
C12—C13—C14—C15−0.5 (2)C12A—C13A—C14A—C15A−1.6 (2)
C12—C13—C14—N1177.13 (14)C12A—C13A—C14A—N1A178.37 (14)
O3—N1—C14—C15171.40 (15)O3A—N1A—C14A—C13A−1.7 (2)
O4—N1—C14—C15−6.8 (2)O4A—N1A—C14A—C13A178.37 (15)
O3—N1—C14—C13−6.3 (2)O3A—N1A—C14A—C15A178.32 (15)
O4—N1—C14—C13175.47 (14)O4A—N1A—C14A—C15A−1.6 (2)
C13—C14—C15—C161.1 (2)C13A—C14A—C15A—C16A1.8 (2)
N1—C14—C15—C16−176.51 (14)N1A—C14A—C15A—C16A−178.17 (14)
C14—C15—C16—C11−0.1 (2)C14A—C15A—C16A—C11A0.0 (2)
O1—C11—C16—C15177.26 (14)O1A—C11A—C16A—C15A176.14 (15)
C12—C11—C16—C15−1.6 (2)C12A—C11A—C16A—C15A−1.9 (2)
C5—O2—C21—C22179.31 (13)C5A—O2A—C21A—C26A0.4 (2)
C5—O2—C21—C26−0.3 (2)C5A—O2A—C21A—C22A−179.83 (13)
O2—C21—C22—C23−179.09 (14)O2A—C21A—C22A—C23A179.88 (14)
C26—C21—C22—C230.5 (2)C26A—C21A—C22A—C23A−0.3 (2)
C21—C22—C23—C24−0.3 (2)C21A—C22A—C23A—C24A−0.3 (2)
C22—C23—C24—C250.0 (2)C22A—C23A—C24A—C25A0.6 (2)
C22—C23—C24—N2−178.87 (14)C22A—C23A—C24A—N2A−179.41 (14)
O5—N2—C24—C25174.65 (16)O5A—N2A—C24A—C25A176.09 (15)
O6—N2—C24—C25−6.2 (2)O6A—N2A—C24A—C25A−3.5 (2)
O5—N2—C24—C23−6.5 (2)O5A—N2A—C24A—C23A−3.9 (2)
O6—N2—C24—C23172.66 (15)O6A—N2A—C24A—C23A176.52 (15)
C23—C24—C25—C260.1 (2)C23A—C24A—C25A—C26A−0.2 (2)
N2—C24—C25—C26178.96 (14)N2A—C24A—C25A—C26A179.80 (14)
C24—C25—C26—C210.1 (2)C24A—C25A—C26A—C21A−0.4 (2)
O2—C21—C26—C25179.14 (14)O2A—C21A—C26A—C25A−179.51 (15)
C22—C21—C26—C25−0.4 (2)C22A—C21A—C26A—C25A0.7 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2408).

References

  • Critchley, J. P., Knight, G. J. & Wright, W. W. (1983). Heat Resistant Polymers New York: Plenum Press.
  • Faghihi, K. (2008). Turk. J. Chem.32, 75–86.
  • Hsiao, S. H. & Leu, W. T. (2004). Eur. Polym. J.40, 2471–2480.
  • Hsiao, S. H., Yang, C. P. & Huang, S. C. (2004). Eur. Polym. J.40, 1063–1074.
  • Mehdipour-Ataei, S. (2005). Eur. Polym. J.41, 65–71.
  • Mehdipour-Ataei, S., Mosslemin, M. H. & Shafieezadeh, M. (2006). React. Funct. Polym.66, 403–412.
  • Schab-Balcerzak, E., Sek, D., Volozhin, A., Chamenko, T. & Jarzabek, B. (2002). Eur. Polym. J.38, 423–430.
  • Shao, Y., Li, Y., Zhao, X., Ma, T., Gong, C. & Yang, F. (2007). Eur. Polym. J.43, 4389–4397.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography