PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o944.
Published online 2009 April 2. doi:  10.1107/S1600536809011751
PMCID: PMC2977645

(E)-2,3-Bis(4-methoxy­phen­yl)acrylic acid

Abstract

In the title mol­ecule, C17H16O4, the angle between the aromatic ring planes is 69.1 (6)°. The crystal structure is stabilized by inter­molecular O—H(...)O hydrogen bonds; mol­ecules related by a centre of symmetry are linked to form inversion dimers.

Related literature

For the biological properties and synthesis of resveratrol (trans-3,4′,5-trihydroxy­stilbene) and its derivatives, see: Huang, Ruan et al. (2007 [triangle]); Huang et al. (2008 [triangle]); Jang et al. (1997 [triangle]); Ruan et al. (2006 [triangle]); Schulze et al. (2005 [triangle]); Shi et al. (2005 [triangle]). For related crystal structures, see: Huang, Li et al. (2007 [triangle]); Stomberg et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o944-scheme1.jpg

Experimental

Crystal data

  • C17H16O4
  • M r = 284.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o944-efi1.jpg
  • a = 5.8690 (12) Å
  • b = 9.1480 (18) Å
  • c = 13.992 (3) Å
  • α = 83.65 (3)°
  • β = 85.43 (3)°
  • γ = 80.92 (3)°
  • V = 735.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.973, T max = 0.991
  • 3196 measured reflections
  • 2895 independent reflections
  • 1779 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.151
  • S = 1.08
  • 2895 reflections
  • 194 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011751/wn2320sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011751/wn2320Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financed by a grant (Project 30772627) from the National Natural Science Foundation of China.

supplementary crystallographic information

Comment

Resveratrol (trans-3, 4',5-trihydroxystilbene) and its derivatives have attracted much attention since it was first isolated in 1939, because of their physiological properties and potential therapeutic values (Schulze et al., 2005; Jang et al., 1997). In our laboratory, we have synthesized two series of resveratrol derivatives (Ruan et al., 2006; Huang et al., 2007). As part of an extensive structure-activity relationship (SAR) study on resveratrol derivatives, another series of analogues of resveratrol has been synthesized. One of them, namely the title compound, was obtained as single crystals and its crystal structure determined to establish its configuration.

The crystal structure demonstrated that it had the E configuration (Fig. 1). All bond lengths are within normal ranges and very similar to those in related crystal structures (Stomberg et al., 2001). The torsion angles C5—C8—C10—C11 and C9—C8—C10—C11 are 5.9 (4)° and -176.6 (2)°, respectively. The angle between the aromatic ring planes is 69.1 (6)°. In the crystal structure, molecules related by a centre of symmetry are linked to form dimers via intermolecular O—H—O hydrogen bonds (Table 1 and Fig. 2).

Experimental

2-(4-Methoxyphenyl)acetic acid (1.66 g, 0.01 mol), 4-methoxybenzaldehyde (1.36 g, 0.01 mol) and acetic anhydride (15 ml) were added to a three-necked flask in an icewater bath with stirring. Triethylamine (5 ml) was added dropwise into this solution and the mixture was allowed to react at 100°C for 12 h. After cooling to room temperature, the mixture was slowly poured into 50 ml 10% NaOH solution, yielding a white precipitate. This was collected by vacuum filtration, washed with a large amount of water and dried in air. Colorless single crystals were obtained after a week upon evaporation of a solution of the reaction product in a mixture of ethyl acetate (10 ml) and petroleum ether (5 ml).

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (Csp2), 0.96 Å (methyl) and O—H = 0.82 Å. Uiso(H) = 1.2Ueq(Csp2), 1.5Ueq(methyl C and hydroxyl O).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. All H atoms have been omitted.
Fig. 2.
A view of the hydrogen-bonded dimer of the title compound. Dashed lines indicate hydrogen bonds. [Symmetry code: (A) -x + 3, -y + 2, -z + 1]

Crystal data

C17H16O4Z = 2
Mr = 284.30F(000) = 300
Triclinic, P1Dx = 1.283 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8690 (12) ÅCell parameters from 1625 reflections
b = 9.1480 (18) Åθ = 2.2–24.8°
c = 13.992 (3) ŵ = 0.09 mm1
α = 83.65 (3)°T = 298 K
β = 85.43 (3)°Block, colorless
γ = 80.92 (3)°0.30 × 0.20 × 0.10 mm
V = 735.8 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer2895 independent reflections
Radiation source: fine-focus sealed tube1779 reflections with I > 2σ(I)
graphiteRint = 0.027
ω/2θ scansθmax = 26.0°, θmin = 1.5°
Absorption correction: ψ scan (North et al., 1968)h = 0→7
Tmin = 0.973, Tmax = 0.991k = −11→11
3196 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.151w = 1/[σ2(Fo2) + (0.0675P)2 + 0.024P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2895 reflectionsΔρmax = 0.18 e Å3
194 parametersΔρmin = −0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7983 (6)1.3447 (4)−0.0150 (2)0.0938 (11)
H1A0.67741.2848−0.01320.141*
H1B0.81081.3993−0.07740.141*
H1C0.76291.41300.03330.141*
C21.0269 (4)1.1661 (3)0.08912 (15)0.0505 (6)
C30.8532 (4)1.1641 (3)0.16030 (17)0.0565 (6)
H3A0.71031.22250.15130.068*
C40.8905 (4)1.0754 (3)0.24524 (17)0.0548 (6)
H40.77051.07520.29290.066*
C51.0983 (4)0.9870 (2)0.26254 (15)0.0423 (5)
C61.2741 (4)0.9919 (3)0.19039 (16)0.0553 (6)
H61.41820.93570.20010.066*
C71.2382 (4)1.0786 (3)0.10484 (17)0.0621 (7)
H71.35731.07860.05680.074*
C81.1324 (4)0.8926 (2)0.35563 (15)0.0462 (6)
C91.2916 (4)0.9385 (3)0.41980 (16)0.0495 (6)
C101.0275 (4)0.7750 (2)0.38730 (16)0.0500 (6)
H101.05820.73490.44980.060*
C110.8736 (4)0.6996 (2)0.34031 (15)0.0466 (6)
C120.7562 (4)0.5977 (3)0.39652 (17)0.0563 (7)
H120.77700.58210.46230.068*
C130.6106 (4)0.5188 (3)0.35884 (17)0.0577 (7)
H130.53540.45050.39850.069*
C140.5767 (4)0.5414 (2)0.26176 (17)0.0495 (6)
C150.6987 (4)0.6386 (3)0.20313 (16)0.0550 (6)
H150.68260.65040.13700.066*
C160.8418 (4)0.7169 (2)0.24152 (16)0.0521 (6)
H160.91980.78310.20130.063*
C170.2995 (5)0.3745 (3)0.2726 (2)0.0746 (8)
H17A0.39980.29480.30530.112*
H17B0.20670.33450.23150.112*
H17C0.20090.42830.31920.112*
O11.0108 (3)1.2517 (2)0.00292 (12)0.0753 (6)
O21.3849 (3)1.04878 (19)0.39719 (11)0.0674 (6)
O31.3251 (3)0.85636 (19)0.50110 (11)0.0691 (6)
H31.40250.89580.53410.104*
O40.4348 (3)0.47241 (18)0.21611 (12)0.0641 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.091 (2)0.104 (2)0.074 (2)0.007 (2)−0.0214 (18)0.0273 (18)
C20.0525 (15)0.0561 (14)0.0426 (12)−0.0126 (12)−0.0038 (11)0.0029 (10)
C30.0391 (13)0.0660 (16)0.0582 (14)0.0010 (12)−0.0025 (11)0.0085 (12)
C40.0350 (12)0.0696 (16)0.0543 (14)−0.0040 (11)0.0048 (10)0.0067 (12)
C50.0397 (12)0.0455 (12)0.0429 (12)−0.0120 (10)−0.0034 (9)−0.0004 (9)
C60.0366 (13)0.0690 (16)0.0543 (14)0.0024 (11)0.0015 (11)0.0018 (12)
C70.0468 (15)0.0817 (18)0.0506 (14)−0.0023 (13)0.0095 (12)0.0054 (13)
C80.0419 (13)0.0483 (13)0.0475 (12)−0.0076 (10)−0.0032 (10)0.0010 (10)
C90.0472 (13)0.0552 (14)0.0451 (13)−0.0108 (11)−0.0061 (11)0.0061 (11)
C100.0515 (14)0.0544 (14)0.0432 (12)−0.0101 (11)−0.0037 (11)0.0034 (10)
C110.0437 (13)0.0481 (13)0.0465 (13)−0.0074 (10)−0.0032 (10)0.0030 (10)
C120.0595 (16)0.0638 (16)0.0461 (13)−0.0183 (13)−0.0028 (11)0.0053 (11)
C130.0527 (15)0.0620 (15)0.0595 (15)−0.0223 (12)0.0017 (12)0.0050 (12)
C140.0434 (13)0.0456 (13)0.0588 (14)−0.0050 (11)−0.0071 (11)−0.0009 (11)
C150.0662 (16)0.0519 (14)0.0475 (13)−0.0145 (12)−0.0108 (12)0.0059 (11)
C160.0544 (14)0.0522 (14)0.0502 (14)−0.0178 (12)−0.0027 (11)0.0064 (11)
C170.0668 (18)0.0648 (17)0.097 (2)−0.0284 (15)−0.0050 (16)−0.0028 (15)
O10.0737 (13)0.0920 (14)0.0513 (10)−0.0045 (11)−0.0040 (9)0.0201 (9)
O20.0759 (12)0.0728 (12)0.0594 (11)−0.0376 (10)−0.0217 (9)0.0176 (9)
O30.0865 (14)0.0735 (12)0.0535 (10)−0.0355 (10)−0.0255 (9)0.0150 (9)
O40.0639 (11)0.0610 (11)0.0720 (11)−0.0240 (9)−0.0171 (9)0.0030 (9)

Geometric parameters (Å, °)

C1—O11.418 (3)C9—O31.303 (2)
C1—H1A0.9600C10—C111.455 (3)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—C121.384 (3)
C2—O11.364 (3)C11—C161.398 (3)
C2—C31.368 (3)C12—C131.371 (3)
C2—C71.385 (3)C12—H120.9300
C3—C41.375 (3)C13—C141.377 (3)
C3—H3A0.9300C13—H130.9300
C4—C51.376 (3)C14—O41.356 (3)
C4—H40.9300C14—C151.386 (3)
C5—C61.387 (3)C15—C161.362 (3)
C5—C81.490 (3)C15—H150.9300
C6—C71.372 (3)C16—H160.9300
C6—H60.9300C17—O41.423 (3)
C7—H70.9300C17—H17A0.9600
C8—C101.339 (3)C17—H17B0.9600
C8—C91.482 (3)C17—H17C0.9600
C9—O21.222 (3)O3—H30.8200
O1—C1—H1A109.5C8—C10—C11130.8 (2)
O1—C1—H1B109.5C8—C10—H10114.6
H1A—C1—H1B109.5C11—C10—H10114.6
O1—C1—H1C109.5C12—C11—C16116.9 (2)
H1A—C1—H1C109.5C12—C11—C10117.9 (2)
H1B—C1—H1C109.5C16—C11—C10125.1 (2)
O1—C2—C3124.8 (2)C13—C12—C11122.4 (2)
O1—C2—C7116.4 (2)C13—C12—H12118.8
C3—C2—C7118.8 (2)C11—C12—H12118.8
C2—C3—C4119.8 (2)C12—C13—C14119.5 (2)
C2—C3—H3A120.1C12—C13—H13120.3
C4—C3—H3A120.1C14—C13—H13120.3
C3—C4—C5122.6 (2)O4—C14—C13125.2 (2)
C3—C4—H4118.7O4—C14—C15115.5 (2)
C5—C4—H4118.7C13—C14—C15119.3 (2)
C4—C5—C6117.04 (19)C16—C15—C14120.6 (2)
C4—C5—C8121.03 (19)C16—C15—H15119.7
C6—C5—C8121.9 (2)C14—C15—H15119.7
C7—C6—C5121.0 (2)C15—C16—C11121.2 (2)
C7—C6—H6119.5C15—C16—H16119.4
C5—C6—H6119.5C11—C16—H16119.4
C6—C7—C2120.8 (2)O4—C17—H17A109.5
C6—C7—H7119.6O4—C17—H17B109.5
C2—C7—H7119.6H17A—C17—H17B109.5
C10—C8—C9117.8 (2)O4—C17—H17C109.5
C10—C8—C5126.2 (2)H17A—C17—H17C109.5
C9—C8—C5115.95 (18)H17B—C17—H17C109.5
O2—C9—O3122.1 (2)C2—O1—C1118.0 (2)
O2—C9—C8121.2 (2)C9—O3—H3109.5
O3—C9—C8116.7 (2)C14—O4—C17118.3 (2)
O1—C2—C3—C4−178.7 (2)C9—C8—C10—C11−176.6 (2)
C7—C2—C3—C4−0.3 (4)C5—C8—C10—C115.9 (4)
C2—C3—C4—C50.1 (4)C8—C10—C11—C12−168.2 (2)
C3—C4—C5—C60.9 (4)C8—C10—C11—C1614.8 (4)
C3—C4—C5—C8179.8 (2)C16—C11—C12—C13−1.5 (4)
C4—C5—C6—C7−1.7 (4)C10—C11—C12—C13−178.8 (2)
C8—C5—C6—C7179.4 (2)C11—C12—C13—C14−0.5 (4)
C5—C6—C7—C21.5 (4)C12—C13—C14—O4−178.9 (2)
O1—C2—C7—C6178.1 (2)C12—C13—C14—C152.9 (4)
C3—C2—C7—C6−0.4 (4)O4—C14—C15—C16178.3 (2)
C4—C5—C8—C1066.9 (3)C13—C14—C15—C16−3.3 (4)
C6—C5—C8—C10−114.2 (3)C14—C15—C16—C111.3 (4)
C4—C5—C8—C9−110.7 (2)C12—C11—C16—C151.1 (3)
C6—C5—C8—C968.2 (3)C10—C11—C16—C15178.2 (2)
C10—C8—C9—O2−176.7 (2)C3—C2—O1—C1−0.5 (4)
C5—C8—C9—O21.1 (3)C7—C2—O1—C1−178.9 (2)
C10—C8—C9—O32.9 (3)C13—C14—O4—C173.6 (3)
C5—C8—C9—O3−179.4 (2)C15—C14—O4—C17−178.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.802.608 (2)169

Symmetry codes: (i) −x+3, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2320).

References

  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Huang, X.-F., Li, H.-Q., Shi, L., Li, H.-Q. & Zhu, H.-L. (2007). J. Chem. Crystallogr.37, 739–742.
  • Huang, X.-F., Li, H.-Q., Shi, L., Xue, J.-Y., Ruan, B.-F. & Zhu, H.-L. (2008). Chem. Biodiver.5, 636–642. [PubMed]
  • Huang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem.42, 263–267. [PubMed]
  • Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Pezztuo, J. M. (1997). Science, 275, 218–220. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ruan, B.-F., Huang, X.-F., Ding, H., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodiver.3, 975–981. [PubMed]
  • Schulze, K., Schreiber, L. & Szankowski, I. (2005). J. Agric. Food Chem.53, 356–362. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, L., Huang, X.-F., Shi, L., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y., Zhu, H.-L. & Liu, C.-H. (2008). Aust. J. Chem.61, 472–475.
  • Stomberg, R., Li, S.-M., Lundquist, K. & Norinder, U. (2001). J. Chem. Crystallogr.31, 321–328.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography