PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o943.
Published online 2009 April 2. doi:  10.1107/S1600536809011623
PMCID: PMC2977644

(3R,6S,7aS)-3-Phenyl-6-(phenyl­sulfan­yl)perhydro­pyrrolo[1,2-c]oxazol-5-one

Abstract

Mol­ecules of the title compound [systematic name: (2R,5S,7S)-2-phenyl-7-phenyl­sulfanyl-1-aza-3-oxa­bicyclo­[3.3.0]octan-8-one], C18H17NO2S, form high quality crystals even though they are only packed using C—H(...)O(carbon­yl) and weak C—H(...)S inter­actions. The dihedral angle between the aromatic rings is 85.53 (5)°. The fused rings adopt envelope and twist conformations.

Related literature

For related structures, see Nagasaka & Imai (1995 [triangle]); Anwar et al. (2003 [triangle]); Bailey et al. (2000 [triangle]); McCarthy et al. (1999 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o943-scheme1.jpg

Experimental

Crystal data

  • C18H17NO2S
  • M r = 311.39
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o943-efi1.jpg
  • a = 5.3884 (3) Å
  • b = 11.2227 (7) Å
  • c = 25.3308 (16) Å
  • V = 1531.81 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 121 K
  • 0.75 × 0.39 × 0.30 mm

Data collection

  • Bruker–Nonius APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.829, T max = 0.937
  • 45370 measured reflections
  • 5948 independent reflections
  • 5711 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.087
  • S = 1.11
  • 5948 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2508 Friedel pairs
  • Flack parameter: 0.01 (4)

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT and SADABS (Bruker, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]), Mercury (Macrae et al., 2006 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011623/er2064sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011623/er2064Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr J. Wikaira of the University of Canterbury for her assistance in data collection, as well as the New Zealand Foundation for Science and Technology and New Zealand Pharmaceuticals Ltd for financial support.

supplementary crystallographic information

Comment

During the course of our efforts to delineate, in detail, the conversion of the bicyclic lactam 1 into its highly prized, chiral α,β-unsaturated derivative 5 employing sulfur chemistry (Fig. 3), we were able to isolate and separate the three anticipated products (2,3 & 4) from the rapid quenching of the lithium enolate of 1 with the electrophile, PhSSPh: the two 6-(phenylthio)-mono-adducts 2 and 3 were found to be predominant in the mixture with up to 10% only of the 6,6-bis(phenylthio)-adduct. In order to be able to unequivocally assign structures to each of the mono-adducts, we carried out an X-ray crystallographic study of the title cis(endo-) adduct 2 (Scheme) so that structural inferences made on the basis of nOe experiments could be corroborated (see bottom right entry in fig. 3).

The 2-(p-methoxyphenyl) derivative is described (molecule 21b) by Nagasaka & Imai (1995). Related compounds in the Cambridge Structural Database [C.S.D. Version 5.30 with November 2008 updates (Allen, 2002)] have been reported by Anwar et al. (2003) (IJAGUV) and Bailey et al. (2000) (QINMEF & QINMEJ).

The asymmetric unit is shown in Figure 1. The 5-membered fused rings (N4,C5,C6,C7,C7a) and (C1,O2,C3,N4,C7a) are best described as having envelope (on C6) and twist (on C1—O2) conformations (Spek, 2009). The 3-phenyl (C2,C4,C9—C12) and 6-phenylthio (C13—C18) phenyl rings subtend angles of 85.53 (5)° to each other and 71.74 (5) and 39.74 (5)° respectively to the mean plane through the fused ring (octan-8-one) atoms. The corresponding three angles for the 6-benzyl closest structural relative (QINMEF) are 80.14 (7), 71.18 (6) and 36.82 (7)° while the interplanar angles found for the 3-phenyl rings in IJAGUV & QINMIJ structures are 74.1 (4) and 76.73 (7)%, respectively.

The molecular packing is provided by mainly weak C–H···O interactions (entries 1–3, Table 1, involving a bifurcated O) as partly shown in Figure 2. The weak, just significant, C—H···S interactions have been observed before contributing to dimer formation in CUQXUH with a C—H···S angles of 140° (McCarthy et al., 1999).

These crystals were of superb quality, confirmed by the final agreement indices and difference density maps, which raises the issue of how many of the weak intermolecular interactions may just be fortuitous, with packing largely determined by the overall molecular shape and van der Waal's forces.

Experimental

To a solution of the lactam 1 (19.7 g, 97.0 mmol) in dry THF (180 ml) was added dropwise LiHMDS (1 M solution in hexanes; 116 ml, 116 mmol) at -78 °C and the solution was stirred for further 60 min before a concentrated solution of diphenylsulfide (25.4 g, 116 mmol) in dry THF (25 ml) was added rapidly in one single portion at the same temperature. After being stirred for 3 h the reaction mixture was quenched at -78 °C with saturated aqueous ammonium chloride solution (50 ml) and allowed to warm to ambient temperature before being diluted with ethyl acetate (400 ml). The separated organic phase was washed with water and brine, dried over MgSO4 and concentrated to give a crude oil, the composition of which was determined by HPLC analysis. Based on this analysis the two diastereomeric phenylthioethers 2 and 3 were formed in 40% and 49% yield, respectively. In addition, the reaction provided the bis(phenylthio)-adduct 4 in 9% as the by-product and 2% of the starting material remained unreacted. The crude product was finally fractionated by flash column chromatography (silica gel, 10% and 20% ethyl acetate/petroleum ether) to yield the three adducts 2, 3 and 4.

(2): (3R,6S,7aS)-3-Phenyl-6-(phenylthio)tetrahydropyrrolo [1,2-c]oxazol-5(1H)-one was recrystallized from ethyl acetate/petroleum ether to give colourless crystals, Rf = 0.44 (30% ethyl acetate/petroleum ether); m.p. 97–98 °C, [α]21D=+215.6 (c 0.545, CHCl3); FTIR (neat) 1692 (C=O) cm-1; 1H NMR (500 MHz, CDCl3) δ 7.57–7.53 (m, 2H), 7.46–7.42 (m, 2H), 7.38–7.27 (m, 6H), 6.29 (s, 1H, H3), 4.26 (t, J=9.7 Hz, 1H, H6), 4.17 (dd, J=8.2, 6.2 Hz, 1H, H1α), 4.06–3.99 (m, 1H, H7aα), 3.21 (t, J=8.1 Hz, 1H, H1β), 2.81 (ddd, J=13.5, 9.2, 7.3 Hz, 1H, H7α), 1.93 (ddd, J=13.5, 10.2, 6.4 Hz, 1H, H7β); 13C NMR (125 MHz, CDCl3) δ 173.54, 138.18, 132.91, 132.85, 128.94, 128.55, 128.29, 127.89, 125.82, 87.18, 71.88, 55.73, 51.06, 32.03; HRMS (ES+) m/z calcd for C18H17NO2SNa+ 334.0878, obsd 334.0872; Anal. calcd for C18H17NO2S: C, 69.43; H, 5.50; N, 4.50. Found: C, 69.32; H, 5.63; N, 4.63.

(3): (3R,6R,7aS)-3-Phenyl-6-(phenylthio)tetrahydropyrrolo [1,2-c]oxazol-5(1H)-one, colourless crystals, Rf = 0.30 (30% ethyl acetate/petroleum ether); m.p. 80 °C; [α]20D = +102.3 (c 1.05, CHCl3); FTIR (neat) 1702 (C=O) cm-1; 1H NMR (500 MHz, DMSO-d6) δ 7.52–7.48 (m, 2H); 7.41–7.30 (m, 6H); 7.27–7.23 (m, 2H), 6.05 (s, 1H, H3); 4.22 (dd, J=9.4, 3.3 Hz, 1H, H6); 4.13 (dd, J=8.0, 6.2 Hz, 1H, H1α); 3.90–3.83 (m, 1H, H7aα); 3.47 (t, J=8.4 Hz, 1H, H1β); 2.56 (ddd, J=14.5, 9.2, 5.3 Hz, 1H, H7β); 2.28 (ddd, J=14.2, 7.5, 3.3, 1H, H7α); 13C NMR (125 MHz, DMSO-d6) δ 174.58, 138.57, 132.55, 131.99, 129.02, 128.49, 128.25, 127.76, 125.93, 86.47, 70.97, 57.11, 49.25, 30.66; HRMS (ES+) m/z calcd for C18H17NO2SNa+ 334.0878, obsd 334.0879; Anal. calcd for C18H17NO2S: C, 69.43; H, 5.50; N, 4.50. Found C, 69.39; H, 5.59; N, 4.55.

(4): (3R,7aS)-3-Phenyl-6,6- bis(phenylthio)tetrahydropyrrolo[1,2-c]oxazol-5(1H)-one, colourless crystals, Rf = 0.54 (30% ethyl acetate/petroleum ether); m.p. 108 °C; [α]20D = +157.1 (c 0.62, CDCl3); FTIR (neat) 1698 (C=O) cm-1; 1H NMR (500 MHz, CDCl3) δ 7.71–7.68 (m, 2H), 7.59–7.55 (m, 2H), 7.41–7.29 (m, 9H), 7.25–7.20 (m, 2H), 6.19 (s, 1H), 4.03 (dd, J=8.1, 6.3 Hz, 1H), 3.69–3.63 (m, 1H), 3.09 (t, J=8.1 Hz, 1H), 2.54 (dd, J=14.3, 7.0 Hz, 1H), 2.35 (dd, J=14.3, 6.5 Hz, 1H); 13C NMR (125 MHz, CDCl3) δ 171.71, 137.95, 136.65, 136.27, 131.18, 130.44, 129.96, 129.57, 129.01, 128.87, 128.67, 128.35, 126.02, 87.09, 71.78, 68.68, 55.00, 39.79; HRMS (ES+) m/z calcd for C24H21NO2S2Na+ 442.0911, obsd 442.0191; Anal. calcd for C24H21NO2S2: C, 68.70; H, 5.04; N, 3.34. Found C, 68.88; H, 5.29; N, 3.37.

Refinement

A total of 9 reflections within 2θ 68° were omitted from refinement as either outliers or partially screened by the backstop. All H atoms bound to carbon were constrained to their expected geometries (C—H 0.95, 0.99 & 1.00 Å). All H atoms were refined with Uiso 1.2 times that of the Ueq of their parent atom.

Figures

Fig. 1.
Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 50% probability level.
Fig. 2.
Packing diagram (Mercury; Macrae et al.,2006) of the unit cell. Contact atoms are shown as balls; not all interactions and labels are shown for clarity (see Table 1).
Fig. 3.
Preparation of the title compound.

Crystal data

C18H17NO2SF(000) = 656
Mr = 311.39Dx = 1.350 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9806 reflections
a = 5.3884 (3) Åθ = 3.0–34.4°
b = 11.2227 (7) ŵ = 0.22 mm1
c = 25.3308 (16) ÅT = 121 K
V = 1531.81 (16) Å3Block, colourless
Z = 40.75 × 0.39 × 0.30 mm

Data collection

Bruker–Nonius APEXII CCD area-detector diffractometer5948 independent reflections
Radiation source: fine-focus sealed tube5711 reflections with I > 2σ(I)
graphiteRint = 0.030
Detector resolution: 8.333 pixels mm-1θmax = 34.0°, θmin = 3.0°
[var phi] and ω scansh = −8→8
Absorption correction: multi-scan (Blessing, 1995)k = −17→16
Tmin = 0.829, Tmax = 0.937l = −38→38
45370 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.087w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1721P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
5948 reflectionsΔρmax = 0.38 e Å3
199 parametersΔρmin = −0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 2508 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.53402 (5)0.52168 (2)0.147539 (9)0.02284 (6)
O20.63842 (15)0.59460 (6)0.36457 (3)0.02259 (14)
O50.76332 (18)0.36178 (6)0.23809 (3)0.02532 (15)
N40.80755 (16)0.53105 (7)0.28760 (3)0.01873 (14)
C10.5697 (2)0.67901 (8)0.32437 (4)0.02362 (18)
H1A0.57350.76160.33810.028*
H1B0.40200.66190.31030.028*
C20.88109 (18)0.41716 (8)0.37229 (3)0.01718 (15)
C30.70664 (17)0.48760 (8)0.33825 (3)0.01756 (15)
H30.55430.43920.33130.021*
C40.8234 (2)0.29955 (8)0.38433 (4)0.02221 (17)
H40.67930.26400.36950.027*
C50.77799 (18)0.46990 (8)0.24169 (3)0.01866 (15)
C60.7641 (2)0.56099 (8)0.19659 (4)0.02006 (16)
H60.93050.56910.17950.024*
C70.6940 (3)0.67833 (8)0.22432 (4)0.0274 (2)
H710.78570.74620.20870.033*
H720.51380.69380.22120.033*
C7A0.7678 (2)0.66023 (8)0.28236 (4)0.02122 (17)
H7A0.92230.70550.29110.025*
C90.9747 (2)0.23345 (9)0.41785 (5)0.02726 (19)
H90.93430.15310.42590.033*
C101.1843 (2)0.28528 (10)0.43943 (4)0.0288 (2)
H101.28780.24060.46240.035*
C111.2439 (2)0.40310 (10)0.42745 (5)0.0274 (2)
H111.38770.43860.44240.033*
C121.09340 (18)0.46886 (9)0.39371 (4)0.02237 (17)
H121.13530.54890.38530.027*
C130.71008 (18)0.45302 (7)0.09728 (4)0.01856 (15)
C140.9116 (2)0.37876 (9)0.10770 (4)0.02280 (18)
H140.95650.36110.14310.027*
C151.0467 (2)0.33070 (10)0.06609 (4)0.02566 (19)
H151.18590.28130.07320.031*
C160.9801 (2)0.35426 (9)0.01414 (4)0.02609 (19)
H161.07460.3221−0.01420.031*
C170.7743 (2)0.42516 (9)0.00390 (4)0.02471 (18)
H170.72540.4397−0.03160.030*
C180.63983 (19)0.47488 (9)0.04504 (4)0.02167 (16)
H180.50010.52380.03770.026*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02433 (10)0.02516 (10)0.01902 (10)0.00568 (8)−0.00096 (8)−0.00069 (8)
O20.0304 (3)0.0205 (3)0.0169 (3)0.0075 (3)0.0009 (3)−0.0014 (2)
O50.0404 (4)0.0151 (3)0.0205 (3)0.0020 (3)−0.0005 (3)−0.0027 (2)
N40.0270 (4)0.0144 (3)0.0148 (3)0.0010 (3)0.0016 (3)−0.0007 (2)
C10.0323 (5)0.0203 (4)0.0183 (4)0.0070 (3)−0.0006 (3)−0.0002 (3)
C20.0203 (4)0.0172 (3)0.0141 (3)0.0012 (3)0.0009 (3)−0.0011 (2)
C30.0218 (4)0.0166 (3)0.0143 (3)0.0006 (3)0.0007 (3)−0.0006 (2)
C40.0250 (4)0.0179 (3)0.0236 (4)−0.0004 (3)−0.0009 (3)−0.0001 (3)
C50.0243 (4)0.0167 (3)0.0150 (3)0.0018 (3)0.0006 (3)−0.0009 (3)
C60.0282 (4)0.0173 (3)0.0147 (4)0.0012 (3)0.0007 (3)0.0002 (3)
C70.0481 (6)0.0161 (3)0.0180 (4)0.0049 (4)0.0023 (4)0.0002 (3)
C7A0.0305 (5)0.0140 (3)0.0191 (4)−0.0005 (3)0.0014 (3)−0.0016 (3)
C90.0311 (5)0.0220 (4)0.0287 (5)0.0036 (4)0.0001 (4)0.0047 (3)
C100.0285 (5)0.0328 (5)0.0251 (5)0.0093 (4)−0.0033 (4)0.0021 (4)
C110.0213 (4)0.0334 (5)0.0276 (5)0.0029 (4)−0.0047 (4)−0.0034 (4)
C120.0197 (4)0.0229 (4)0.0245 (4)−0.0016 (3)0.0002 (3)−0.0016 (3)
C130.0228 (4)0.0169 (3)0.0160 (3)−0.0008 (3)−0.0019 (3)0.0000 (3)
C140.0280 (5)0.0238 (4)0.0167 (4)0.0053 (3)−0.0025 (3)0.0008 (3)
C150.0268 (4)0.0281 (4)0.0222 (4)0.0062 (4)−0.0019 (4)−0.0027 (3)
C160.0301 (5)0.0293 (4)0.0189 (4)0.0002 (4)0.0015 (4)−0.0029 (3)
C170.0311 (5)0.0272 (4)0.0158 (4)−0.0028 (4)−0.0047 (4)0.0004 (3)
C180.0251 (4)0.0216 (4)0.0183 (4)−0.0007 (3)−0.0053 (3)0.0022 (3)

Geometric parameters (Å, °)

S1—C131.7648 (10)C7—H710.9900
S1—C61.8098 (10)C7—H720.9900
O2—C31.4217 (11)C7A—H7A1.0000
O2—C11.4393 (12)C9—C101.3831 (17)
O5—C51.2194 (11)C9—H90.9500
N4—C51.3598 (11)C10—C111.3940 (17)
N4—C7A1.4716 (11)C10—H100.9500
N4—C31.4762 (11)C11—C121.3901 (15)
C1—C7A1.5218 (15)C11—H110.9500
C1—H1A0.9900C12—H120.9500
C1—H1B0.9900C13—C141.3942 (13)
C2—C41.3900 (12)C13—C181.3981 (12)
C2—C121.3927 (13)C14—C151.3899 (14)
C2—C31.5007 (13)C14—H140.9500
C3—H31.0000C15—C161.3896 (14)
C4—C91.3913 (15)C15—H150.9500
C4—H40.9500C16—C171.3892 (16)
C5—C61.5348 (13)C16—H160.9500
C6—C71.5395 (13)C17—C181.3866 (15)
C6—H61.0000C17—H170.9500
C7—C7A1.5363 (14)C18—H180.9500
C13—S1—C6103.50 (5)H71—C7—H72108.8
C3—O2—C1106.90 (7)N4—C7A—C1100.10 (8)
C5—N4—C7A113.75 (8)N4—C7A—C7104.74 (7)
C5—N4—C3122.24 (8)C1—C7A—C7118.00 (10)
C7A—N4—C3110.50 (7)N4—C7A—H7A111.1
O2—C1—C7A102.90 (8)C1—C7A—H7A111.1
O2—C1—H1A111.2C7—C7A—H7A111.1
C7A—C1—H1A111.2C10—C9—C4119.71 (10)
O2—C1—H1B111.2C10—C9—H9120.1
C7A—C1—H1B111.2C4—C9—H9120.1
H1A—C1—H1B109.1C9—C10—C11120.05 (10)
C4—C2—C12119.60 (9)C9—C10—H10120.0
C4—C2—C3119.09 (9)C11—C10—H10120.0
C12—C2—C3121.26 (8)C12—C11—C10120.22 (10)
O2—C3—N4102.93 (7)C12—C11—H11119.9
O2—C3—C2109.72 (7)C10—C11—H11119.9
N4—C3—C2116.27 (8)C11—C12—C2119.82 (9)
O2—C3—H3109.2C11—C12—H12120.1
N4—C3—H3109.2C2—C12—H12120.1
C2—C3—H3109.2C14—C13—C18119.67 (9)
C2—C4—C9120.59 (10)C14—C13—S1122.90 (7)
C2—C4—H4119.7C18—C13—S1117.43 (7)
C9—C4—H4119.7C15—C14—C13119.76 (9)
O5—C5—N4125.01 (9)C15—C14—H14120.1
O5—C5—C6127.15 (8)C13—C14—H14120.1
N4—C5—C6107.84 (7)C16—C15—C14120.60 (10)
C5—C6—C7104.01 (7)C16—C15—H15119.7
C5—C6—S1112.46 (6)C14—C15—H15119.7
C7—C6—S1110.72 (8)C17—C16—C15119.47 (10)
C5—C6—H6109.8C17—C16—H16120.3
C7—C6—H6109.8C15—C16—H16120.3
S1—C6—H6109.8C18—C17—C16120.49 (9)
C7A—C7—C6105.07 (8)C18—C17—H17119.8
C7A—C7—H71110.7C16—C17—H17119.8
C6—C7—H71110.7C17—C18—C13119.95 (9)
C7A—C7—H72110.7C17—C18—H18120.0
C6—C7—H72110.7C13—C18—H18120.0
C3—O2—C1—C7A−42.19 (10)C5—N4—C7A—C1124.87 (9)
C1—O2—C3—N430.62 (10)C3—N4—C7A—C1−17.02 (10)
C1—O2—C3—C2155.00 (8)C5—N4—C7A—C72.19 (12)
C5—N4—C3—O2−145.28 (9)C3—N4—C7A—C7−139.70 (9)
C7A—N4—C3—O2−7.18 (10)O2—C1—C7A—N434.70 (9)
C5—N4—C3—C294.76 (11)O2—C1—C7A—C7147.49 (8)
C7A—N4—C3—C2−127.14 (9)C6—C7—C7A—N4−14.67 (12)
C4—C2—C3—O2125.46 (9)C6—C7—C7A—C1−124.87 (9)
C12—C2—C3—O2−51.84 (11)C2—C4—C9—C100.09 (16)
C4—C2—C3—N4−118.31 (9)C4—C9—C10—C11−0.26 (17)
C12—C2—C3—N464.39 (11)C9—C10—C11—C12−0.13 (17)
C12—C2—C4—C90.47 (15)C10—C11—C12—C20.70 (16)
C3—C2—C4—C9−176.88 (9)C4—C2—C12—C11−0.86 (14)
C7A—N4—C5—O5−167.92 (11)C3—C2—C12—C11176.43 (9)
C3—N4—C5—O5−31.03 (16)C6—S1—C13—C1437.85 (9)
C7A—N4—C5—C611.47 (12)C6—S1—C13—C18−142.53 (7)
C3—N4—C5—C6148.36 (8)C18—C13—C14—C152.42 (15)
O5—C5—C6—C7159.26 (12)S1—C13—C14—C15−177.97 (8)
N4—C5—C6—C7−20.11 (11)C13—C14—C15—C16−1.15 (17)
O5—C5—C6—S139.41 (14)C14—C15—C16—C17−0.94 (17)
N4—C5—C6—S1−139.96 (7)C15—C16—C17—C181.75 (16)
C13—S1—C6—C5−98.36 (7)C16—C17—C18—C13−0.48 (15)
C13—S1—C6—C7145.76 (7)C14—C13—C18—C17−1.62 (14)
C5—C6—C7—C7A20.79 (12)S1—C13—C18—C17178.75 (8)
S1—C6—C7—C7A141.81 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7A—H7A···O5i1.002.553.4305 (13)147
C7—H72···O5ii0.992.623.3493 (16)131
C1—H1B···O5ii0.992.713.1513 (13)108
C1—H1A···S1ii0.993.003.9512 (14)162
C4—H4···S1iii0.952.983.7531 (13)139

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2064).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Anwar, M., Bailey, J. H., Dickinson, L. C., Edwards, H. J., Goswami, R. & Moloney, M. G. (2003). Org. Biomol Chem.1, 2364–2376. [PubMed]
  • Bailey, J. H., Byfield, A. T. J., Davis, P. J., Foster, A. C., Leech, M., Moloney, M. G., Muller, M. & Prout, C. K. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1977–1982.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McCarthy, D. G., Collins, C. C., O’Driscoll, J. P. & Lawrence, S. E. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3667–3675.
  • Nagasaka, T. & Imai, T. (1995). Chem. Pharm. Bull 43, 1081–1088.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography