PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): o941.
Published online 2009 April 2. doi:  10.1107/S1600536809011799
PMCID: PMC2977642

N-(4-Meth­oxy-2-nitro­phen­yl)-N-(methyl­sulfon­yl)acetamide

Abstract

In the title compound, C10H12N2O6S, the nitro group is twisted slightly out of the plane of the aromatic ring, forming a dihedral angle of 20.79 (1)°. In the crystal, the mol­ecules arrange themselves as a chain along the a axis through inter­molecular C—H(...)O inter­actions.

Related literature

For the synthesis of sulfur-containing heterocyclic compounds, see: Siddiqui et al. (2007 [triangle]); Wen et al. (2006 [triangle]); Zhang et al. (2006 [triangle]). For related structures, see: Zhang et al. (2006 [triangle]); Wen et al. (2005 [triangle]); Zia-ur-Rehman et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o941-scheme1.jpg

Experimental

Crystal data

  • C10H12N2O6S
  • M r = 288.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o941-efi1.jpg
  • a = 7.1512 (2) Å
  • b = 15.4303 (5) Å
  • c = 11.3217 (3) Å
  • β = 91.769 (2)°
  • V = 1248.70 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 296 K
  • 0.21 × 0.11 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.958, T max = 0.974
  • 14122 measured reflections
  • 3102 independent reflections
  • 2101 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.128
  • S = 1.05
  • 3102 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SMART (Bruker, 2007 [triangle]); data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]) and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011799/bt2918sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011799/bt2918Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Pakistan Council of Scientific & Industrial Research Laboratories Complex, Lahore, Pakistan, for the provision of necessary chemicals and facilities.

supplementary crystallographic information

Comment

N-(Substituted phenyl)acetamides are considered as important intermediates in organic synthesis. A large number of heterocyclic compounds such as 2,5-piperazinedione (Wen et al., 2006), (quinolin-8-yloxy) acetamide (Zhang et al., 2006) and 2,2-(1,3,4-thiadiazolyl-2,5-dithio)diacetamide (Wen et al., 2005) are being efficiently synthesized starting from such acetamides. In the present paper, the structure of N-(4-Methoxy-2-nitrophenyl)-N-(methylsulfonyl)acetamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Siddiqui et al., 2007).

In the molecule (Fig. 1), the bond lengths and bond angles are similar to those in the related molecules (Wen et al., 2006; Zhang et al., 2006) and are within in normal ranges. The nitro group is slightly twisted out of the plane of the aromatic ring. Each molecule is linked to its neighbour by inter molecular C—H···O interactions forming a chain along the a axis (Table 1 and Fig. 2).

Experimental

A mixture of N-(4-methoxy-2-nitrophenyl)methane sulfonamide (2.462507 g; 10.0 mmoles) and acetic anhydride (10.0 ml) was heated to reflux for half an hour and then poued over crushed ice. Resultant solids were then washed with cold water and dried under reduced pressure. Yellow crystals were obtained by slow evaporation of an ethanolic solution over a period of two days.

Refinement

H atoms bound to C were placed in geometric positions (C—H distance = 0.93 to 0.96 Å) using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Perspective view of the crystal packing showing inter molecular C—H···O interactions (dashed lines) along a. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C10H12N2O6SF(000) = 600
Mr = 288.29Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3173 reflections
a = 7.1512 (2) Åθ = 2.6–26.8°
b = 15.4303 (5) ŵ = 0.28 mm1
c = 11.3217 (3) ÅT = 296 K
β = 91.769 (2)°Needles, yellow
V = 1248.70 (6) Å30.21 × 0.11 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3102 independent reflections
Radiation source: fine-focus sealed tube2101 reflections with I > 2σ(I)
graphiteRint = 0.042
[var phi] and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −8→9
Tmin = 0.958, Tmax = 0.974k = −20→20
14122 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0614P)2 + 0.2596P] where P = (Fo2 + 2Fc2)/3
3102 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.23442 (8)0.16533 (4)0.86323 (4)0.03679 (18)
O10.3919 (3)0.43383 (14)0.73036 (15)0.0788 (7)
O20.5342 (3)0.31646 (11)0.76949 (14)0.0535 (5)
O30.0897 (2)0.22746 (11)0.84351 (15)0.0493 (4)
O40.3188 (2)0.12704 (11)0.76361 (13)0.0489 (4)
O50.1853 (2)0.54616 (10)1.10272 (14)0.0473 (4)
O60.6008 (3)0.10620 (12)0.94545 (17)0.0634 (5)
N10.4337 (3)0.37563 (12)0.79726 (15)0.0390 (4)
N20.3979 (2)0.21872 (11)0.94551 (14)0.0353 (4)
C10.3511 (3)0.30400 (13)0.98604 (17)0.0311 (4)
C20.3598 (3)0.37840 (13)0.91680 (16)0.0296 (4)
C30.3029 (3)0.45779 (13)0.95680 (17)0.0334 (5)
H30.30890.50640.90840.040*
C40.2359 (3)0.46491 (14)1.07076 (18)0.0341 (5)
C50.2273 (3)0.39268 (15)1.14165 (18)0.0413 (6)
H50.18450.39731.21810.050*
C60.2828 (3)0.31336 (15)1.09848 (18)0.0393 (5)
H60.27400.26471.14640.047*
C70.1573 (4)0.08423 (16)0.9575 (2)0.0538 (7)
H7A0.25520.04250.97070.081*
H7B0.04970.05610.92220.081*
H7C0.12450.10951.03160.081*
C80.1068 (4)0.55680 (17)1.2166 (2)0.0525 (7)
H8A0.07750.61681.22880.079*
H8B0.19550.53791.27660.079*
H8C−0.00530.52281.22090.079*
C90.5736 (3)0.18093 (16)0.97108 (19)0.0431 (6)
C100.7164 (4)0.23869 (19)1.0292 (2)0.0590 (7)
H10A0.66320.29511.04090.089*
H10B0.82260.24360.97980.089*
H10C0.75520.21461.10420.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0472 (4)0.0292 (3)0.0344 (3)−0.0019 (2)0.0066 (2)−0.0012 (2)
O10.1238 (19)0.0701 (14)0.0443 (10)0.0384 (13)0.0293 (11)0.0251 (10)
O20.0705 (12)0.0439 (10)0.0476 (9)0.0051 (9)0.0257 (8)−0.0059 (8)
O30.0464 (10)0.0414 (10)0.0595 (10)0.0024 (8)−0.0069 (8)−0.0045 (8)
O40.0640 (11)0.0455 (10)0.0378 (8)−0.0032 (8)0.0122 (7)−0.0081 (7)
O50.0607 (11)0.0338 (9)0.0480 (9)0.0058 (8)0.0120 (8)−0.0095 (7)
O60.0757 (14)0.0435 (11)0.0705 (12)0.0253 (10)−0.0037 (10)−0.0059 (9)
N10.0486 (12)0.0364 (11)0.0324 (9)−0.0029 (9)0.0081 (8)0.0001 (8)
N20.0418 (11)0.0276 (10)0.0367 (9)0.0042 (8)0.0042 (7)−0.0011 (7)
C10.0328 (11)0.0271 (11)0.0335 (10)0.0007 (9)0.0034 (8)−0.0016 (8)
C20.0292 (11)0.0312 (11)0.0285 (9)−0.0022 (9)0.0037 (7)−0.0016 (8)
C30.0378 (12)0.0283 (11)0.0341 (10)−0.0029 (9)0.0017 (8)0.0015 (8)
C40.0320 (12)0.0313 (12)0.0391 (11)0.0008 (9)0.0029 (8)−0.0084 (9)
C50.0494 (14)0.0428 (14)0.0324 (10)−0.0010 (11)0.0126 (9)−0.0037 (10)
C60.0499 (14)0.0333 (12)0.0353 (10)0.0013 (10)0.0103 (9)0.0060 (9)
C70.0731 (18)0.0406 (14)0.0486 (13)−0.0138 (13)0.0156 (12)0.0016 (11)
C80.0554 (16)0.0489 (15)0.0540 (14)0.0012 (12)0.0161 (12)−0.0194 (12)
C90.0476 (14)0.0426 (14)0.0394 (11)0.0143 (11)0.0041 (10)0.0010 (10)
C100.0478 (16)0.0689 (19)0.0597 (15)0.0149 (14)−0.0081 (12)−0.0093 (14)

Geometric parameters (Å, °)

S1—O31.4234 (17)C3—H30.9300
S1—O41.4239 (15)C4—C51.376 (3)
S1—N21.6868 (19)C5—C61.381 (3)
S1—C71.745 (2)C5—H50.9300
O1—N11.207 (2)C6—H60.9300
O2—N11.209 (2)C7—H7A0.9600
O5—C41.357 (2)C7—H7B0.9600
O5—C81.432 (3)C7—H7C0.9600
O6—C91.206 (3)C8—H8A0.9600
N1—C21.469 (2)C8—H8B0.9600
N2—C91.407 (3)C8—H8C0.9600
N2—C11.437 (3)C9—C101.493 (3)
C1—C61.385 (3)C10—H10A0.9600
C1—C21.393 (3)C10—H10B0.9600
C2—C31.372 (3)C10—H10C0.9600
C3—C41.394 (3)
O3—S1—O4118.63 (10)C4—C5—H5120.2
O3—S1—N2104.23 (9)C6—C5—H5120.2
O4—S1—N2109.67 (10)C5—C6—C1122.1 (2)
O3—S1—C7109.68 (13)C5—C6—H6119.0
O4—S1—C7109.68 (11)C1—C6—H6119.0
N2—S1—C7103.83 (11)S1—C7—H7A109.5
C4—O5—C8117.47 (18)S1—C7—H7B109.5
O2—N1—O1122.44 (18)H7A—C7—H7B109.5
O2—N1—C2119.68 (18)S1—C7—H7C109.5
O1—N1—C2117.88 (18)H7A—C7—H7C109.5
C9—N2—C1121.94 (18)H7B—C7—H7C109.5
C9—N2—S1120.69 (15)O5—C8—H8A109.5
C1—N2—S1117.36 (14)O5—C8—H8B109.5
C6—C1—C2117.03 (19)H8A—C8—H8B109.5
C6—C1—N2118.78 (18)O5—C8—H8C109.5
C2—C1—N2124.09 (17)H8A—C8—H8C109.5
C3—C2—C1122.09 (17)H8B—C8—H8C109.5
C3—C2—N1116.68 (18)O6—C9—N2119.8 (2)
C1—C2—N1121.22 (18)O6—C9—C10124.3 (2)
C2—C3—C4119.31 (19)N2—C9—C10116.0 (2)
C2—C3—H3120.3C9—C10—H10A109.5
C4—C3—H3120.3C9—C10—H10B109.5
O5—C4—C5125.15 (19)H10A—C10—H10B109.5
O5—C4—C3114.93 (19)C9—C10—H10C109.5
C5—C4—C3119.91 (19)H10A—C10—H10C109.5
C4—C5—C6119.54 (19)H10B—C10—H10C109.5
O3—S1—N2—C9−172.42 (16)O1—N1—C2—C1160.0 (2)
O4—S1—N2—C9−44.42 (19)C1—C2—C3—C40.7 (3)
C7—S1—N2—C972.73 (18)N1—C2—C3—C4−178.38 (18)
O3—S1—N2—C16.58 (17)C8—O5—C4—C5−3.8 (3)
O4—S1—N2—C1134.58 (15)C8—O5—C4—C3177.00 (19)
C7—S1—N2—C1−108.27 (16)C2—C3—C4—O5179.21 (19)
C9—N2—C1—C6−85.2 (3)C2—C3—C4—C5−0.1 (3)
S1—N2—C1—C695.8 (2)O5—C4—C5—C6179.9 (2)
C9—N2—C1—C298.7 (2)C3—C4—C5—C6−0.9 (3)
S1—N2—C1—C2−80.3 (2)C4—C5—C6—C11.4 (4)
C6—C1—C2—C3−0.3 (3)C2—C1—C6—C5−0.7 (3)
N2—C1—C2—C3175.92 (19)N2—C1—C6—C5−177.2 (2)
C6—C1—C2—N1178.73 (19)C1—N2—C9—O6172.7 (2)
N2—C1—C2—N1−5.0 (3)S1—N2—C9—O6−8.3 (3)
O2—N1—C2—C3158.5 (2)C1—N2—C9—C10−7.6 (3)
O1—N1—C2—C3−21.0 (3)S1—N2—C9—C10171.38 (17)
O2—N1—C2—C1−20.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10B···O3i0.962.503.453 (3)169

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2918).

References

  • Bruker (2007). APEX2, SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, H. L., Zia-ur-Rehman, M., Ahmad, N., Weaver, G. W. & Lucas, P. D. (2007). Chem. Pharm. Bull.55, 1014–1017178. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wen, Y.-H., Li, X.-M., Xu, L.-L., Tang, X.-F. & Zhang, S.-S. (2006). Acta Cryst. E62, o4427–o4428.
  • Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.
  • Zhang, S.-S., Xu, L.-L., Wen, H.-L., Li, X.-M. & Wen, Y.-H. (2006). Acta Cryst. E62, o3071–o3072.
  • Zia-ur-Rehman, M., Akbar, N., Arshad, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o2092. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography