PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m602.
Published online 2009 April 30. doi:  10.1107/S1600536809015268
PMCID: PMC2977636

1,1-Bis[4-(trifluoro­meth­yl)phen­yl]germetane

Abstract

The inter­nal C—Ge—C bond angle in the germacyclo­butane ring of the title compound, C17H14F6Ge or [Ge(C3H6)(C7H4F3)2], is 77.8 (3)°. The –CF3 groups display rotational disorder [occupancies 0.604 (14):0.396 (14) and 0.410 (6):0.411 (6):0.179 (3)] and the germacyclo­butane ring also shows disorder [occupancies 0.604 (14):0.396 (14)].

Related literature

For the synthesis of the title compound, see: Leigh et al. (2008 [triangle]). For related compounds see: Tokitoh et al. (1995 [triangle]); Eichler et al. (1999 [triangle]); Meiners et al. (2002 [triangle]); Tajima et al. (2005 [triangle]). For 1,1-bis[3,5-bis(trifluoromethyl)phenyl]germetane, which exhibits similar structural features, see: Potter et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m602-scheme1.jpg

Experimental

Crystal data

  • [Ge(C3H6)(C7H4F3)2]
  • M r = 404.87
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m602-efi1.jpg
  • a = 13.596 (6) Å
  • b = 6.412 (3) Å
  • c = 20.243 (9) Å
  • β = 107.081 (7)°
  • V = 1687 (1) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.87 mm−1
  • T = 173 K
  • 0.40 × 0.38 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan SADABS (Bruker, 1997 [triangle]) T min = 0.484, T max = 0.688
  • 14478 measured reflections
  • 3867 independent reflections
  • 2378 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.097
  • S = 0.99
  • 3867 reflections
  • 258 parameters
  • 19 restraints
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015268/im2108sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015268/im2108Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support and for a postgraduate scholarship to LAH.

supplementary crystallographic information

Comment

Photolysis of 1,1-diarylgermetanes results in two competing modes of cycloreversion: (2 + 2) to yield the corresponding 1,1-diarylgermene (R2Ge=CH2) and ethylene, and (3 + 1) to yield the corresponding diarylgermylene (R2Ge) and cyclopropane (Leigh et al., 2008). While the quantum yield for decomposition of the germetane remains roughly constant regardless of aromatic substitutent (Φca 0.10), decreasing the electron density at germanium by aromatic ring substitution favors formation of the germylene and cyclopropane (Leigh et al., 2008). The molecular structure of (I) is shown in Figure 1. The internal C—Ge—C bond angle is 77.8 (3)°.

To our knowledge, there are no other reported crystal structures of germacyclobutanes (i.e. those in which the three carbon atoms of the four membered ring are all saturated) with which to compare these data. There are, however, several reported crystal structures of germacyclobutenes to which limited comparisons can be made (Tokitoh et al., 1995; Eichler et al., 1999; Meiners et al., 2002; Tajima et al., 2005). The endocyclic Ge—C bond distances are quite similar, despite the carbon-carbon double bond within the ring, and the endocyclic C—Ge—C angle is slightly smaller in these germacyclobutene molecules, which is to be expected. The 4-membered germacyclobutane ring of the title compound is not planar. The angle between the plane made by the carbon atoms in the ring (C15—C17) and the plane containing the germanium and two adjacent carbon atoms in the ring (C15, C17) is 24 (2)°. The aromatic rings are nearly perpendicular, with an angle of 85.8 (1)° between them.

The trifluoromethyl groups are disordered and have been refined as such (see refinement details). The two CF3 groups interact with each other and the germacyclobutane ring of neighbouring molecules (see the packing diagram - Figure 2). The non-planarity of the germacyclobutane ring results in disorder that has been refined over two occupancy sites.

The crystal structure of an analogue of (I) in which the aromatic rings are substituted at the 3 and 5 positions with CF3 groups [i.e. 1,1-bis(3,5-bis(trifluoromethyl)phenyl)germetane] exhibits similar structural features (Potter, et al., 2009).

Experimental

Compound (I) was synthesized as described elsewhere (Leigh et al., 2008). Single crystals for x-ray diffraction were obtained via repeated recrystallizations from methanol.

Refinement

The data were collected at -100°C on a single-crystal mounted in a cryoloop. X-ray crystallographic analysis was performed at the McMaster Analytical X-Ray (MAX) Diffraction Facility. Hydrogen atoms were treated as riding upon their parent atoms with C—H distances of 0.95 Å (aromatic) and 0.96 Å (CH2) and with Uiso(H) = 1.2Ueq(C). Fluorine atoms at C7/C7A were split over two positions, with approximately 60:40 occupancy. Fluorine atoms at C14/C14A/C14' were disordered over three positions (41:41:18 occupancy) with one thermal parameter (0.06). The propyl moiety of the germacycle is disordered over two sites (60:40 occupancy) and a restraint is applied so that the groups can twist away from each other but not leave the sphere of germanium.

Figures

Fig. 1.
The molecular structures of (I) drawn with 50% probability ellipsoids. H atoms not shown. Both trifluoromethyl groups and the (CH2)3 group are disordered but the disorder is not shown for clarity.
Fig. 2.
Packing diagram of (I) in the space group P 21/n.

Crystal data

[Ge(C3H6)(C7H4F3)2]F(000) = 808
Mr = 404.87Dx = 1.594 Mg m3
Monoclinic, P21/nMelting point: 319 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 13.596 (6) ÅCell parameters from 5916 reflections
b = 6.412 (3) Åθ = 3.5–26.6°
c = 20.243 (9) ŵ = 1.87 mm1
β = 107.081 (7)°T = 173 K
V = 1687 (1) Å3Block, colourless
Z = 40.40 × 0.38 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer3867 independent reflections
Radiation source: fine-focus sealed tube2378 reflections with I > 2σ(I)
graphiteRint = 0.053
[var phi] and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan SADABSh = −17→17
Tmin = 0.484, Tmax = 0.688k = −8→8
14478 measured reflectionsl = −26→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0275P)2 + 2.3419P] where P = (Fo2 + 2Fc2)/3
3867 reflections(Δ/σ)max = 0.022
258 parametersΔρmax = 0.68 e Å3
19 restraintsΔρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ge1A0.88719 (3)0.20119 (6)0.19017 (2)0.03626 (13)0.396 (14)
C15A0.7582 (7)0.347 (4)0.1861 (18)0.049 (3)0.396 (14)
H15C0.74830.37380.23190.058*0.396 (14)
H15D0.74660.47550.15760.058*0.396 (14)
C16A0.6994 (5)0.152 (3)0.1482 (9)0.058 (3)0.396 (14)
H16C0.64020.19310.10860.070*0.396 (14)
H16D0.67450.06380.18010.070*0.396 (14)
C17A0.7845 (7)0.034 (4)0.1227 (15)0.0493 (15)0.396 (14)
H17C0.78110.06240.07400.059*0.396 (14)
H17D0.7889−0.11770.13250.059*0.396 (14)
Ge10.88719 (3)0.20119 (6)0.19017 (2)0.03626 (13)0.604 (14)
C150.7486 (5)0.302 (3)0.1857 (11)0.049 (3)0.604 (14)
H15A0.72320.25250.22400.058*0.604 (14)
H15B0.74000.45510.17960.058*0.604 (14)
C160.7073 (5)0.1749 (18)0.1173 (6)0.058 (3)0.604 (14)
H16A0.69580.26600.07630.070*0.604 (14)
H16B0.64240.10220.11560.070*0.604 (14)
C170.7979 (11)0.013 (6)0.122 (2)0.0493 (15)0.604 (14)
H17A0.8172−0.00080.07860.059*0.604 (14)
H17B0.7874−0.12490.14070.059*0.604 (14)
C10.9675 (3)0.0705 (5)0.27568 (18)0.0341 (8)
C21.0113 (3)−0.1241 (6)0.2752 (2)0.0445 (9)
H2A1.0030−0.19360.23240.053*
C31.0670 (3)−0.2189 (6)0.3359 (2)0.0485 (10)
H3A1.0965−0.35260.33460.058*
C41.0799 (3)−0.1212 (6)0.39821 (19)0.0407 (9)
C51.0369 (3)0.0734 (6)0.3998 (2)0.0471 (10)
H5A1.04560.14240.44270.056*
C60.9812 (3)0.1671 (5)0.3389 (2)0.0444 (9)
H6A0.95170.30060.34040.053*
C80.9769 (3)0.3844 (5)0.15718 (18)0.0379 (8)
C91.0823 (3)0.3923 (6)0.1889 (2)0.0470 (10)
H9A1.11260.30070.22620.056*
C101.1437 (3)0.5314 (6)0.1669 (2)0.0510 (10)
H10A1.21580.53450.18890.061*
C111.1000 (3)0.6659 (6)0.1130 (2)0.0448 (9)
C120.9955 (3)0.6588 (6)0.0806 (2)0.0512 (10)
H12A0.96530.75060.04330.061*
C130.9352 (3)0.5183 (6)0.1024 (2)0.0471 (10)
H13A0.86350.51300.07950.057*
C71.1400 (4)−0.2268 (7)0.4628 (2)0.0561 (11)0.604 (14)
F11.1175 (11)−0.4307 (12)0.4626 (7)0.083 (3)0.604 (14)
F21.1343 (13)−0.146 (2)0.5219 (6)0.078 (4)0.604 (14)
F31.2396 (5)−0.227 (3)0.4671 (8)0.072 (3)0.604 (14)
C7A1.1400 (4)−0.2268 (7)0.4628 (2)0.0561 (11)0.396 (14)
F1A1.0871 (16)−0.380 (3)0.4803 (12)0.106 (7)0.396 (14)
F2A1.1506 (18)−0.091 (3)0.5158 (8)0.070 (5)0.396 (14)
F3A1.2337 (11)−0.281 (4)0.4667 (12)0.091 (8)0.396 (14)
C141.1663 (3)0.8216 (7)0.0908 (2)0.0589 (11)0.410 (6)
F41.1154 (5)1.0064 (10)0.0742 (5)0.0613 (7)*0.410 (6)
F51.1939 (6)0.7630 (11)0.0372 (4)0.0613 (7)*0.410 (6)
F61.2236 (6)0.9328 (12)0.1444 (3)0.0613 (7)*0.410 (6)
C14'1.1663 (3)0.8216 (7)0.0908 (2)0.0589 (11)0.411 (6)
F4'1.1110 (5)0.9575 (12)0.0424 (5)0.0613 (7)*0.411 (6)
F5'1.2282 (6)0.7196 (11)0.0569 (4)0.0613 (7)*0.411 (6)
F6'1.2569 (6)0.8560 (12)0.1386 (4)0.0613 (7)*0.411 (6)
C14A1.1663 (3)0.8216 (7)0.0908 (2)0.0589 (11)0.179 (3)
F4A1.1322 (12)0.867 (2)0.0240 (6)0.0613 (7)*0.179 (3)
F5A1.2639 (10)0.769 (2)0.1061 (9)0.0613 (7)*0.179 (3)
F6A1.1623 (13)1.0042 (19)0.1205 (9)0.0613 (7)*0.179 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ge1A0.0323 (2)0.03686 (19)0.0365 (2)0.00216 (19)0.00519 (16)0.0002 (2)
C15A0.042 (3)0.046 (7)0.062 (3)0.005 (3)0.021 (3)0.017 (4)
C16A0.032 (3)0.065 (4)0.072 (7)−0.005 (3)0.006 (4)0.022 (6)
C17A0.042 (3)0.052 (5)0.045 (3)−0.009 (4)−0.002 (4)0.003 (3)
Ge10.0323 (2)0.03686 (19)0.0365 (2)0.00216 (19)0.00519 (16)0.0002 (2)
C150.042 (3)0.046 (7)0.062 (3)0.005 (3)0.021 (3)0.017 (4)
C160.032 (3)0.065 (4)0.072 (7)−0.005 (3)0.006 (4)0.022 (6)
C170.042 (3)0.052 (5)0.045 (3)−0.009 (4)−0.002 (4)0.003 (3)
C10.0292 (19)0.0364 (17)0.034 (2)−0.0018 (15)0.0055 (16)−0.0001 (16)
C20.048 (2)0.045 (2)0.037 (2)0.0075 (18)0.0078 (19)−0.0067 (17)
C30.051 (2)0.0427 (19)0.047 (2)0.0167 (19)0.007 (2)0.0012 (19)
C40.036 (2)0.0454 (19)0.039 (2)0.0012 (17)0.0077 (18)0.0022 (18)
C50.049 (2)0.051 (2)0.035 (2)0.0023 (19)0.0048 (19)−0.0080 (19)
C60.043 (2)0.037 (2)0.047 (2)0.0069 (17)0.0042 (19)−0.0044 (18)
C80.037 (2)0.0359 (17)0.035 (2)0.0027 (16)0.0030 (17)−0.0011 (16)
C90.039 (2)0.048 (2)0.050 (2)0.0036 (18)0.006 (2)0.0091 (19)
C100.034 (2)0.056 (2)0.059 (3)0.0020 (19)0.007 (2)0.006 (2)
C110.044 (2)0.046 (2)0.045 (2)−0.0039 (18)0.0148 (19)−0.0005 (18)
C120.048 (2)0.055 (3)0.045 (2)−0.004 (2)0.006 (2)0.0112 (19)
C130.035 (2)0.057 (2)0.041 (2)−0.0023 (19)−0.0019 (18)0.0086 (19)
C70.058 (3)0.063 (3)0.041 (2)0.009 (3)0.004 (2)0.006 (2)
F10.110 (8)0.054 (3)0.061 (6)−0.009 (4)−0.013 (4)0.019 (3)
F20.110 (8)0.089 (7)0.042 (4)0.048 (6)0.034 (4)0.022 (4)
F30.044 (5)0.093 (6)0.062 (5)0.014 (4)−0.011 (4)0.014 (4)
C7A0.058 (3)0.063 (3)0.041 (2)0.009 (3)0.004 (2)0.006 (2)
F1A0.110 (12)0.108 (12)0.075 (12)−0.022 (10)−0.012 (7)0.050 (9)
F2A0.078 (7)0.099 (11)0.023 (5)0.012 (7)0.001 (5)0.015 (6)
F3A0.103 (13)0.122 (17)0.053 (8)0.080 (12)0.029 (8)0.013 (8)
C140.055 (3)0.062 (3)0.059 (3)0.005 (2)0.015 (2)0.006 (2)
C14'0.055 (3)0.062 (3)0.059 (3)0.005 (2)0.015 (2)0.006 (2)
C14A0.055 (3)0.062 (3)0.059 (3)0.005 (2)0.015 (2)0.006 (2)

Geometric parameters (Å, °)

Ge1A—C11.944 (3)C3—C41.372 (5)
Ge1A—C81.947 (4)C3—H3A0.9500
Ge1A—C17A1.961 (4)C4—C51.382 (5)
Ge1A—C15A1.969 (5)C4—C71.486 (5)
Ge1A—C16A2.463 (6)C5—C61.381 (5)
C15A—C16A1.562 (11)C5—H5A0.9500
C15A—H15C0.9900C6—H6A0.9500
C15A—H15D0.9900C8—C131.384 (5)
C16A—C17A1.591 (13)C8—C91.389 (5)
C16A—H16C0.9900C9—C101.381 (5)
C16A—H16D0.9900C9—H9A0.9500
C17A—H17C0.9900C10—C111.382 (5)
C17A—H17D0.9900C10—H10A0.9500
C15—C161.563 (11)C11—C121.379 (5)
C15—H15A0.9900C11—C141.500 (6)
C15—H15B0.9900C12—C131.376 (5)
C16—C171.591 (13)C12—H12A0.9500
C16—H16A0.9900C13—H13A0.9500
C16—H16B0.9900C7—F21.326 (9)
C17—H17A0.9900C7—F31.331 (9)
C17—H17B0.9900C7—F11.342 (9)
C1—C61.383 (5)C14—F51.302 (8)
C1—C21.385 (5)C14—F61.340 (7)
C2—C31.381 (5)C14—F41.363 (7)
C2—H2A0.9500
C1—Ge1A—C8108.72 (15)C3—C2—C1121.0 (3)
C1—Ge1A—C17A118.9 (11)C3—C2—H2A119.5
C8—Ge1A—C17A118.7 (11)C1—C2—H2A119.5
C1—Ge1A—C15A120.2 (12)C4—C3—C2120.4 (3)
C8—Ge1A—C15A109.8 (11)C4—C3—H3A119.8
C17A—Ge1A—C15A77.8 (3)C2—C3—H3A119.8
C1—Ge1A—C16A120.4 (4)C3—C4—C5119.5 (3)
C8—Ge1A—C16A130.5 (4)C3—C4—C7119.3 (3)
C16A—C15A—Ge1A87.7 (4)C5—C4—C7121.2 (4)
C16A—C15A—H15C114.0C6—C5—C4119.8 (3)
Ge1A—C15A—H15C114.0C6—C5—H5A120.1
C16A—C15A—H15D114.0C4—C5—H5A120.1
Ge1A—C15A—H15D114.0C5—C6—C1121.4 (3)
H15C—C15A—H15D111.2C5—C6—H6A119.3
C15A—C16A—C17A103.0 (8)C1—C6—H6A119.3
C15A—C16A—Ge1A53.0 (3)C13—C8—C9118.1 (4)
C17A—C16A—Ge1A52.7 (2)C13—C8—Ge1A119.9 (3)
C15A—C16A—H16C111.2C9—C8—Ge1A121.9 (3)
C17A—C16A—H16C111.2C10—C9—C8120.9 (4)
Ge1A—C16A—H16C139.4C10—C9—H9A119.5
C15A—C16A—H16D111.2C8—C9—H9A119.5
C17A—C16A—H16D111.2C9—C10—C11119.9 (4)
Ge1A—C16A—H16D111.5C9—C10—H10A120.1
H16C—C16A—H16D109.1C11—C10—H10A120.1
C16A—C17A—Ge1A87.1 (5)C12—C11—C10119.8 (4)
C16A—C17A—H17C114.1C12—C11—C14120.4 (4)
Ge1A—C17A—H17C114.1C10—C11—C14119.8 (4)
C16A—C17A—H17D114.1C13—C12—C11119.8 (4)
Ge1A—C17A—H17D114.1C13—C12—H12A120.1
H17C—C17A—H17D111.3C11—C12—H12A120.1
C16—C15—H15A114.1C12—C13—C8121.4 (4)
C16—C15—H15B114.1C12—C13—H13A119.3
H15A—C15—H15B111.2C8—C13—H13A119.3
C15—C16—C17102.6 (8)F2—C7—F3105.6 (9)
C15—C16—H16A111.2F2—C7—F1108.0 (9)
C17—C16—H16A111.2F3—C7—F1103.0 (9)
C15—C16—H16B111.2F2—C7—C4117.0 (7)
C17—C16—H16B111.2F3—C7—C4110.1 (8)
H16A—C16—H16B109.2F1—C7—C4112.0 (7)
C16—C17—H17A114.1F5—C14—F6125.9 (6)
C16—C17—H17B114.1F5—C14—F4107.2 (5)
H17A—C17—H17B111.3F6—C14—F482.5 (6)
C6—C1—C2117.9 (3)F5—C14—C11113.7 (5)
C6—C1—Ge1A121.2 (3)F6—C14—C11111.6 (4)
C2—C1—Ge1A120.8 (3)F4—C14—C11110.2 (4)
C1—Ge1A—C15A—C16A−102.4 (14)Ge1A—C1—C6—C5179.0 (3)
C8—Ge1A—C15A—C16A130.5 (14)C1—Ge1A—C8—C13−170.8 (3)
C17A—Ge1A—C15A—C16A14 (2)C17A—Ge1A—C8—C1349.1 (6)
Ge1A—C15A—C16A—C17A−18 (2)C15A—Ge1A—C8—C13−37.5 (9)
C1—Ge1A—C16A—C15A102 (2)C16A—Ge1A—C8—C131.8 (7)
C8—Ge1A—C16A—C15A−70 (2)C1—Ge1A—C8—C96.4 (4)
C17A—Ge1A—C16A—C15A−158 (3)C17A—Ge1A—C8—C9−133.7 (6)
C1—Ge1A—C16A—C17A−100.0 (19)C15A—Ge1A—C8—C9139.7 (9)
C8—Ge1A—C16A—C17A88.2 (19)C16A—Ge1A—C8—C9179.0 (7)
C15A—Ge1A—C16A—C17A158 (3)C13—C8—C9—C100.7 (6)
C15A—C16A—C17A—Ge1A18 (2)Ge1A—C8—C9—C10−176.5 (3)
C1—Ge1A—C17A—C16A104.0 (13)C8—C9—C10—C110.4 (6)
C8—Ge1A—C17A—C16A−119.9 (14)C9—C10—C11—C12−0.9 (6)
C15A—Ge1A—C17A—C16A−13.9 (19)C9—C10—C11—C14178.0 (4)
C8—Ge1A—C1—C686.7 (3)C10—C11—C12—C130.3 (6)
C17A—Ge1A—C1—C6−133.3 (7)C14—C11—C12—C13−178.6 (4)
C15A—Ge1A—C1—C6−40.9 (8)C11—C12—C13—C80.9 (6)
C16A—Ge1A—C1—C6−86.8 (6)C9—C8—C13—C12−1.4 (6)
C8—Ge1A—C1—C2−94.4 (3)Ge1A—C8—C13—C12175.9 (3)
C17A—Ge1A—C1—C245.6 (7)C3—C4—C7—F2−167.6 (9)
C15A—Ge1A—C1—C2138.0 (8)C5—C4—C7—F212.3 (10)
C16A—Ge1A—C1—C292.1 (6)C3—C4—C7—F371.9 (9)
C6—C1—C2—C30.0 (6)C5—C4—C7—F3−108.2 (9)
Ge1A—C1—C2—C3−178.9 (3)C3—C4—C7—F1−42.2 (8)
C1—C2—C3—C40.0 (6)C5—C4—C7—F1137.8 (7)
C2—C3—C4—C5−0.1 (6)C12—C11—C14—F5−82.7 (6)
C2—C3—C4—C7179.9 (4)C10—C11—C14—F598.4 (6)
C3—C4—C5—C60.2 (6)C12—C11—C14—F6127.5 (6)
C7—C4—C5—C6−179.8 (4)C10—C11—C14—F6−51.4 (7)
C4—C5—C6—C1−0.2 (6)C12—C11—C14—F437.7 (7)
C2—C1—C6—C50.1 (6)C10—C11—C14—F4−141.2 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2108).

References

  • Bruker (1997). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eichler, B. E., Powell, D. R. & West, R. (1999). Organometallics, 18, 540–545.
  • Leigh, W. J., Potter, G. D., Huck, L. A. & Bhattacharya, A. (2008). Organometallics, 27, 5948–5959.
  • Meiners, F., Haase, D., Koch, R., Saak, W. & Weidenbruch, M. (2002). Organometallics, 21, 3990–3995.
  • Potter, G. D., Jenkins, H. A., Britten, J. F. & Leigh, W. J. (2009). Private communication (deposition number CCDC 724374). CCDC, Cambridge, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tajima, T., Sasaki, T., Sasamori, T., Takeda, N. & Tokitoh, N. (2005). Appl. Organomet. Chem.19, 570–577.
  • Tokitoh, N., Matsumoto, T. & Okazaki, R. (1995). Chem. Lett.12, 1087–1088.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography