PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m589–m590.
Published online 2009 April 30. doi:  10.1107/S1600536809014871
PMCID: PMC2977627

[μ-N,N′-Bis(diphenyl­phosphinometh­yl)benzene-1,4-diamine-κ2 P:P′]bis­[(2,2′-bipyridine-κ2 N,N′)silver(I)] bis­(per­chlorate) acetone disolvate

Abstract

The title complex, [Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2CH3COCH3, is a centrosymmetric dimer with pairs of AgI atoms bridged by N,N′-bis­(diphenyl­phosphinometh­yl)ben­zene-1,4-diamine ligands. In addition, each AgI atom is coordin­ated by one chelating 2,2′-bipyridine ligand, giving a distorted trigonal coordination environment.

Related literature

Diphosphine ligands effectively stabilize low-valent d 10 metals complexes due to their electronic and steric characteristics, see: Meijboom et al. (2009 [triangle]); Ogasawara et al. (2000 [triangle]). Adducts of chelating polypyridyl ligands such as 2,2′-bipyridine and 1,10-phenanthroline (phen) always exhibit strong ligand–metal charge-transfer (LMCT) or metal–ligand charge-transfer (MLCT) absorption bands in the visible spectrum, see: Armaroli (2001 [triangle]). For a series of AgI and CuI complexes containing both diphosphine and chelating polypyridyl ligands which exhibit inter­esting photoluminescent properties at low temperature or even at room temperature, see: Wang et al. (2008 [triangle]). For the synthesis of N,N-bis­[(diphenyl­phosphino)meth­yl]-benzene-1,4-diamine, see: Durran et al. (2000 [triangle]); Hellmann et al. (1962 [triangle]). For related structures, see: Effendy et al. (2007 [triangle]); Zhang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m589-scheme1.jpg

Experimental

Crystal data

  • [Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2C3H6O
  • M r = 1347.68
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m589-efi3.jpg
  • a = 10.6372 (13) Å
  • b = 15.8958 (19) Å
  • c = 16.6684 (19) Å
  • β = 91.432 (3)°
  • V = 2817.5 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 173 K
  • 0.38 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.657, T max = 0.833
  • 14114 measured reflections
  • 6120 independent reflections
  • 3944 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.132
  • S = 1.05
  • 6120 reflections
  • 361 parameters
  • H-atom parameters constrained
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014871/at2766sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014871/at2766Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Programme for Excellent Talents in Guangxi Higher Education Institutions of China.

supplementary crystallographic information

Comment

There has been great interest in d10 metals complexes containing diphosphine and polypyridyl ligands because of two main reasons: the first is diphosphine ligands effectively stabilize low-valent d10 metals complexes due to their electronic and steric characteristics (Meijboom et al., 2009; Ogasawara et al., 2000), and the other is the chelating polypyridyl ligands such as 2,2'-bipyridine and 1,10-phenanthroline (phen) are present of low-energy orbitals, the adducts always exhibit strong Ligand-metal charge-transfer (LMCT) or Metal-ligand charge-transfer (MLCT) absorption bands in the visible spectrum (Armaroli, 2001). In the past, we have obtained a series of AgI and Cu(I) complexes containing both diphosphine and chelating polypyridyl ligands, from which we found that these complexes all exhibit interesting photoluminescent properties at low temperature or even at room temperature (Wang et al., 2008). Here we report the crystal and molecular structure of[Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2.2CH3COCH3, (I). This work complements and extends our structural characterization of d10 metals complexes containing diphosphine and polypyridyl ligands.

Experimental

The synthesis of (I) was carried out by the reaction of AgClO4.H2O (0.045 g, 0.2 mmol), 2,2'-bipyridine (0.032 g, 0.2 mmol) and N,N-bis[(diphenylphosphino)methyl]-benzene-1,4-diamine (0.0504 g, 0.1 mmol, synthesized according to literature (Durran, et al., 2000; Hellmann et al., 1962) in acetonitrile-acetone (7 ml with a ratio of 4: 3) solution, the resulting orange red solution was allowed to stir for 0.5 h at room temperature.Then by slow diffusion of diethyl ether into the solution, block red crystals were formed suitable for X-ray diffraction analysis.

Refinement

All hydrogen atoms were generated geometrically with C—H = 0.95-0.99 Å and N—H = 0.88 Å, and refined with a riding model [Uiso(H) = 1.2Ueq(N,C)]. The highest residual peak is located 0.49Å from atom Ag1 and the deepest hole is located 0.55Å from atom Ag1.

Figures

Fig. 1.
View of (I), showing 30% probability displacement ellipsoids and atom-numbering scheme for the contents of the asymmetric unit. [Symmetry code: (i) -x, y + 1/2, -z + 1/2]

Crystal data

[Ag2(C10H8N2)2(C32H30N2P2)](ClO4)2·2C3H6OF(000) = 1372
Mr = 1347.68Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3856 reflections
a = 10.6372 (13) Åθ = 2.3–25.9°
b = 15.8958 (19) ŵ = 0.91 mm1
c = 16.6684 (19) ÅT = 173 K
β = 91.432 (3)°Block, red
V = 2817.5 (6) Å30.38 × 0.24 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer6120 independent reflections
Radiation source: fine-focus sealed tube3944 reflections with I > 2σ(I)
graphiteRint = 0.044
ω scansθmax = 27.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −6→13
Tmin = 0.657, Tmax = 0.833k = −19→20
14114 measured reflectionsl = −21→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0655P)2] where P = (Fo2 + 2Fc2)/3
6120 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = −0.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.21755 (3)0.40337 (2)0.14606 (2)0.03172 (13)
Cl10.48508 (14)0.89672 (9)0.20183 (10)0.0534 (4)
P10.06386 (11)0.32350 (7)0.20844 (6)0.0217 (2)
O10.5433 (6)0.8587 (4)0.2698 (4)0.124 (2)
O20.5382 (5)0.8626 (4)0.1311 (4)0.120 (2)
O30.5114 (4)0.9841 (3)0.2031 (3)0.0788 (14)
O40.3559 (4)0.8806 (3)0.2030 (3)0.0819 (15)
O5−0.2686 (4)0.1981 (3)0.0953 (3)0.0705 (13)
N1−0.0972 (4)0.3598 (2)0.0811 (2)0.0304 (9)
H1A−0.13200.31970.05170.037*
N20.2913 (4)0.4064 (2)0.0167 (2)0.0300 (8)
N30.3101 (3)0.5301 (2)0.1275 (2)0.0265 (8)
C1−0.0460 (4)0.4297 (3)0.0420 (2)0.0231 (9)
C2−0.0201 (4)0.5056 (3)0.0812 (2)0.0256 (10)
H2A−0.03320.51020.13720.031*
C3−0.0246 (4)0.4255 (3)−0.0395 (2)0.0259 (10)
H3A−0.04070.3744−0.06740.031*
C4−0.0954 (4)0.3509 (3)0.1662 (2)0.0280 (10)
H4A−0.15570.30650.18100.034*
H4B−0.12350.40430.19050.034*
C50.0783 (4)0.2100 (3)0.1927 (2)0.0243 (9)
C6−0.0183 (5)0.1549 (3)0.2088 (2)0.0297 (10)
H6A−0.09610.17570.22740.036*
C7−0.0017 (5)0.0684 (3)0.1979 (3)0.0354 (12)
H7A−0.06850.03070.20860.042*
C80.1110 (5)0.0380 (3)0.1719 (3)0.0375 (12)
H8A0.1212−0.02050.16280.045*
C90.2093 (5)0.0925 (3)0.1589 (3)0.0372 (12)
H9A0.28840.07100.14310.045*
C100.1934 (5)0.1786 (3)0.1686 (3)0.0320 (11)
H10A0.26100.21600.15890.038*
C110.0445 (4)0.3334 (2)0.3160 (2)0.0229 (9)
C12−0.0679 (4)0.3110 (3)0.3519 (3)0.0284 (10)
H12A−0.13580.28910.32020.034*
C13−0.0799 (5)0.3207 (3)0.4338 (3)0.0330 (11)
H13A−0.15670.30590.45810.040*
C140.0169 (6)0.3513 (3)0.4800 (3)0.0411 (13)
H14A0.00740.35790.53620.049*
C150.1292 (5)0.3730 (3)0.4454 (3)0.0414 (13)
H15A0.19720.39370.47770.050*
C160.1419 (4)0.3644 (3)0.3634 (3)0.0294 (10)
H16A0.21860.38000.33950.035*
C170.2814 (5)0.3429 (3)−0.0352 (3)0.0375 (12)
H17A0.25630.2892−0.01640.045*
C180.3065 (5)0.3529 (4)−0.1160 (3)0.0444 (13)
H18A0.29730.3070−0.15210.053*
C190.3447 (5)0.4298 (4)−0.1426 (3)0.0447 (14)
H19A0.36310.4378−0.19750.054*
C200.3565 (4)0.4960 (3)−0.0888 (3)0.0355 (11)
H20A0.38440.5497−0.10600.043*
C210.3265 (4)0.4821 (3)−0.0092 (3)0.0284 (10)
C220.3353 (4)0.5508 (3)0.0512 (3)0.0258 (10)
C230.3680 (4)0.6325 (3)0.0318 (3)0.0365 (12)
H23A0.38300.6474−0.02240.044*
C240.3788 (5)0.6924 (3)0.0920 (3)0.0443 (13)
H24A0.40350.74830.07990.053*
C250.3534 (5)0.6699 (3)0.1697 (3)0.0402 (12)
H25A0.36010.70970.21200.048*
C260.3187 (4)0.5892 (3)0.1843 (3)0.0327 (11)
H26A0.29940.57400.23770.039*
C27−0.4843 (6)0.1744 (5)0.0964 (5)0.087 (2)
H27A−0.48520.23070.12030.131*
H27B−0.51910.13380.13420.131*
H27C−0.53520.17430.04660.131*
C28−0.3312 (7)0.0678 (4)0.0406 (4)0.075 (2)
H28A−0.24110.06060.03180.112*
H28B−0.37730.0651−0.01100.112*
H28C−0.36070.02290.07580.112*
C29−0.3534 (6)0.1507 (4)0.0787 (3)0.0477 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0352 (2)0.0282 (2)0.0323 (2)−0.00696 (17)0.01181 (15)0.00382 (16)
Cl10.0401 (8)0.0428 (8)0.0772 (10)−0.0068 (6)0.0019 (7)−0.0166 (7)
P10.0262 (6)0.0194 (5)0.0198 (5)−0.0024 (5)0.0046 (5)0.0026 (4)
O10.097 (5)0.105 (4)0.169 (6)−0.012 (4)−0.061 (5)0.038 (4)
O20.073 (4)0.116 (4)0.173 (6)−0.027 (3)0.036 (4)−0.097 (4)
O30.089 (4)0.056 (3)0.092 (3)−0.036 (3)0.017 (3)−0.023 (2)
O40.035 (2)0.070 (3)0.142 (5)−0.010 (2)0.009 (3)−0.023 (3)
O50.057 (3)0.086 (3)0.069 (3)−0.019 (3)0.002 (2)−0.014 (2)
N10.038 (2)0.029 (2)0.0236 (19)−0.0080 (18)−0.0099 (17)0.0009 (16)
N20.027 (2)0.029 (2)0.034 (2)−0.0056 (17)0.0079 (17)−0.0015 (17)
N30.0234 (19)0.029 (2)0.0273 (19)−0.0006 (16)−0.0018 (16)0.0013 (16)
C10.020 (2)0.022 (2)0.027 (2)0.0009 (18)−0.0072 (18)0.0053 (17)
C20.026 (2)0.031 (2)0.019 (2)0.002 (2)−0.0001 (18)0.0013 (18)
C30.032 (3)0.023 (2)0.022 (2)0.0005 (19)−0.007 (2)−0.0028 (17)
C40.030 (3)0.026 (2)0.027 (2)0.000 (2)−0.002 (2)0.0050 (19)
C50.033 (3)0.022 (2)0.019 (2)0.0010 (19)0.0032 (19)0.0021 (17)
C60.034 (3)0.030 (3)0.025 (2)−0.005 (2)0.000 (2)−0.0024 (19)
C70.054 (3)0.026 (2)0.026 (2)−0.010 (2)−0.005 (2)0.0019 (19)
C80.060 (4)0.021 (2)0.031 (2)0.001 (2)0.004 (2)−0.001 (2)
C90.042 (3)0.034 (3)0.036 (3)0.015 (2)0.004 (2)0.001 (2)
C100.035 (3)0.028 (3)0.033 (2)0.002 (2)0.004 (2)0.002 (2)
C110.033 (3)0.012 (2)0.025 (2)0.0045 (18)0.0110 (19)0.0015 (17)
C120.029 (3)0.028 (2)0.028 (2)−0.003 (2)0.002 (2)−0.0022 (19)
C130.041 (3)0.035 (3)0.023 (2)−0.003 (2)0.007 (2)0.000 (2)
C140.065 (4)0.035 (3)0.023 (2)0.008 (3)0.001 (3)−0.002 (2)
C150.050 (3)0.046 (3)0.027 (2)0.001 (3)−0.010 (2)−0.002 (2)
C160.030 (3)0.029 (2)0.029 (2)−0.004 (2)0.000 (2)0.003 (2)
C170.037 (3)0.041 (3)0.035 (3)−0.006 (2)0.002 (2)−0.005 (2)
C180.042 (3)0.056 (4)0.035 (3)−0.004 (3)0.005 (2)−0.013 (3)
C190.034 (3)0.075 (4)0.026 (3)0.009 (3)0.003 (2)0.007 (3)
C200.028 (3)0.045 (3)0.034 (3)0.000 (2)0.004 (2)0.008 (2)
C210.022 (2)0.032 (3)0.031 (2)−0.002 (2)0.0059 (19)0.007 (2)
C220.017 (2)0.030 (2)0.030 (2)−0.0009 (19)−0.0068 (18)0.0070 (19)
C230.031 (3)0.039 (3)0.039 (3)−0.010 (2)−0.013 (2)0.012 (2)
C240.044 (3)0.029 (3)0.059 (3)−0.006 (2)−0.014 (3)0.007 (2)
C250.034 (3)0.032 (3)0.054 (3)0.000 (2)−0.001 (3)−0.002 (2)
C260.027 (2)0.034 (3)0.036 (3)−0.002 (2)0.006 (2)−0.003 (2)
C270.057 (5)0.088 (5)0.119 (6)0.012 (4)0.033 (4)0.029 (5)
C280.081 (5)0.057 (4)0.088 (5)−0.012 (4)0.024 (4)−0.003 (4)
C290.047 (4)0.051 (3)0.045 (3)−0.006 (3)0.005 (3)0.010 (3)

Geometric parameters (Å, °)

Ag1—N32.267 (3)C11—C161.378 (6)
Ag1—N22.314 (4)C11—C121.397 (6)
Ag1—P12.3348 (11)C12—C131.383 (6)
Cl1—O41.398 (4)C12—H12A0.9500
Cl1—O11.413 (6)C13—C141.361 (7)
Cl1—O31.416 (4)C13—H13A0.9500
Cl1—O21.428 (5)C14—C151.383 (7)
P1—C111.817 (4)C14—H14A0.9500
P1—C51.830 (4)C15—C161.383 (6)
P1—C41.870 (4)C15—H15A0.9500
O5—C291.203 (6)C16—H16A0.9500
N1—C11.404 (5)C17—C181.388 (7)
N1—C41.425 (5)C17—H17A0.9500
N1—H1A0.8800C18—C191.365 (8)
N2—C171.331 (6)C18—H18A0.9500
N2—C211.336 (5)C19—C201.386 (7)
N3—C261.335 (5)C19—H19A0.9500
N3—C221.346 (5)C20—C211.390 (6)
C1—C31.384 (6)C20—H20A0.9500
C1—C21.397 (6)C21—C221.487 (6)
C2—C3i1.387 (6)C22—C231.386 (6)
C2—H2A0.9500C23—C241.387 (7)
C3—C2i1.387 (6)C23—H23A0.9500
C3—H3A0.9500C24—C251.376 (7)
C4—H4A0.9900C24—H24A0.9500
C4—H4B0.9900C25—C261.358 (6)
C5—C61.383 (6)C25—H25A0.9500
C5—C101.390 (6)C26—H26A0.9500
C6—C71.397 (6)C27—C291.480 (8)
C6—H6A0.9500C27—H27A0.9800
C7—C81.372 (7)C27—H27B0.9800
C7—H7A0.9500C27—H27C0.9800
C8—C91.379 (7)C28—C291.484 (8)
C8—H8A0.9500C28—H28A0.9800
C9—C101.390 (6)C28—H28B0.9800
C9—H9A0.9500C28—H28C0.9800
C10—H10A0.9500
N3—Ag1—N272.30 (12)C13—C12—C11119.7 (4)
N3—Ag1—P1148.80 (9)C13—C12—H12A120.1
N2—Ag1—P1133.15 (9)C11—C12—H12A120.1
O4—Cl1—O1108.8 (4)C14—C13—C12120.7 (5)
O4—Cl1—O3111.9 (3)C14—C13—H13A119.6
O1—Cl1—O3109.0 (3)C12—C13—H13A119.6
O4—Cl1—O2110.5 (3)C13—C14—C15120.2 (4)
O1—Cl1—O2109.0 (4)C13—C14—H14A119.9
O3—Cl1—O2107.6 (3)C15—C14—H14A119.9
C11—P1—C5103.83 (17)C14—C15—C16119.6 (5)
C11—P1—C4103.2 (2)C14—C15—H15A120.2
C5—P1—C4104.8 (2)C16—C15—H15A120.2
C11—P1—Ag1119.36 (15)C11—C16—C15120.7 (4)
C5—P1—Ag1114.18 (14)C11—C16—H16A119.6
C4—P1—Ag1110.07 (14)C15—C16—H16A119.6
C1—N1—C4123.0 (4)N2—C17—C18122.0 (5)
C1—N1—H1A118.5N2—C17—H17A119.0
C4—N1—H1A118.5C18—C17—H17A119.0
C17—N2—C21119.4 (4)C19—C18—C17118.9 (5)
C17—N2—Ag1124.5 (3)C19—C18—H18A120.6
C21—N2—Ag1115.1 (3)C17—C18—H18A120.6
C26—N3—C22119.1 (4)C18—C19—C20119.5 (4)
C26—N3—Ag1123.4 (3)C18—C19—H19A120.2
C22—N3—Ag1116.3 (3)C20—C19—H19A120.2
C3—C1—C2117.7 (4)C19—C20—C21118.5 (5)
C3—C1—N1119.6 (4)C19—C20—H20A120.7
C2—C1—N1122.7 (4)C21—C20—H20A120.7
C3i—C2—C1120.9 (4)N2—C21—C20121.6 (4)
C3i—C2—H2A119.5N2—C21—C22117.1 (4)
C1—C2—H2A119.5C20—C21—C22121.2 (4)
C1—C3—C2i121.4 (4)N3—C22—C23120.4 (4)
C1—C3—H3A119.3N3—C22—C21116.7 (4)
C2i—C3—H3A119.3C23—C22—C21122.8 (4)
N1—C4—P1112.8 (3)C22—C23—C24119.4 (4)
N1—C4—H4A109.0C22—C23—H23A120.3
P1—C4—H4A109.0C24—C23—H23A120.3
N1—C4—H4B109.0C25—C24—C23119.2 (5)
P1—C4—H4B109.0C25—C24—H24A120.4
H4A—C4—H4B107.8C23—C24—H24A120.4
C6—C5—C10119.5 (4)C26—C25—C24118.4 (5)
C6—C5—P1122.1 (3)C26—C25—H25A120.8
C10—C5—P1118.3 (3)C24—C25—H25A120.8
C5—C6—C7120.1 (4)N3—C26—C25123.4 (4)
C5—C6—H6A120.0N3—C26—H26A118.3
C7—C6—H6A120.0C25—C26—H26A118.3
C8—C7—C6120.1 (5)C29—C27—H27A109.5
C8—C7—H7A120.0C29—C27—H27B109.5
C6—C7—H7A120.0H27A—C27—H27B109.5
C7—C8—C9120.1 (4)C29—C27—H27C109.5
C7—C8—H8A120.0H27A—C27—H27C109.5
C9—C8—H8A120.0H27B—C27—H27C109.5
C8—C9—C10120.3 (5)C29—C28—H28A109.5
C8—C9—H9A119.9C29—C28—H28B109.5
C10—C9—H9A119.9H28A—C28—H28B109.5
C9—C10—C5119.9 (4)C29—C28—H28C109.5
C9—C10—H10A120.0H28A—C28—H28C109.5
C5—C10—H10A120.0H28B—C28—H28C109.5
C16—C11—C12119.0 (4)O5—C29—C27119.9 (6)
C16—C11—P1119.6 (3)O5—C29—C28122.0 (6)
C12—C11—P1121.3 (3)C27—C29—C28118.2 (6)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2766).

References

  • Armaroli, N. (2001). Chem. Soc. Rev 30, 113–124.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Durran, S. E., Smith, M. B., Slawin, A. M. Z. & Steed, J. W. (2000). J. Chem. Soc. Dalton Trans pp. 2771–2778.
  • Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White, A. H. (2007). Inorg. Chim. Acta, 360, 1388–1413.
  • Hellmann, H., Bader, J., Birkner, H. & Schumacher, O. (1962). Justus Liebigs Ann. Chem 659, 49–56.
  • Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev.253, 325–342.
  • Ogasawara, M., Yoshida, K. & Hayashi, T. (2000). Organometallics, 19, 1567–1571.
  • Sheldrick, G. M. (1998). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-J., Gui, L.-G., Ni, Q.-L., Liao, Y.-F., Jiang, X.-F., Tang, L.-H., Zhang, Z. & Wu, Q. (2008). CrystEngComm, 10, 1003–1010.
  • Zhang, L., Chen, C.-L., Zhang, Q., Zhang, H.-X. & Kang, B.-S. (2003). Acta Cryst. E59, m536–m537.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography