PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m587–m588.
Published online 2009 April 30. doi:  10.1107/S1600536809014913
PMCID: PMC2977626

catena-Poly[[diaqua­cobalt(II)]-bis­(μ-4-fluoro­benzoato-κ2 O:O′)]

Abstract

The hydro­thermal reaction of CoCO3 and 4-fluoro­benzoic acid afforded the title CoII complex, [Co(C7H4FO2)2(H2O)2]n. The CoII atom is located on an inversion center and is coordinated by six O atoms from two water mol­ecules and four μ2-carboxyl­ate groups of 4-fluoro­benzoate anions, forming a distorted CoO6 octa­hedron, with Co—O bond lengths in the range 2.071 (2)–2.130 (2) Å. All adjacent O—Co—O angles are in the range 84.78 (6)–95.22 (6)° and opposite angles are 180.0°. Each μ-carboxyl­ate group of the 4-fluoro­benzoate anions bridges two symmetry-related CoII atoms. Hydrogen-bonding inter­actions of the coordinated water mol­ecules further connect the cobalt–carboxyl­ate units, forming layers perpendicular to the a axis. The cobalt–oxygen layers are encased in a sandwich-like fashion by layers of π-stacked 4-fluoro­benzoate anions. Within these layers the benzene rings of the 4-fluoro­benzoate anions are π-stacked, with centroid–centroid distances of 3.432 (4) Å.

Related literature

For other complexes of the 2(or 4)-fluoro­benzoato ligand, see: Zhang (2006 [triangle] c); Zhang et al. (2005a [triangle],b [triangle]). For related structures, see: Zhang (2004 [triangle], 2005 [triangle], 2006a [triangle],b [triangle],c [triangle]); Zhang et al. (2008 [triangle]); Majumder et al. (2006 [triangle]); Shi et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m587-scheme1.jpg

Experimental

Crystal data

  • [Co(C7H4FO2)2(H2O)2]
  • M r = 373.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m587-efi1.jpg
  • a = 14.866 (3) Å
  • b = 6.6043 (13) Å
  • c = 7.3081 (15) Å
  • β = 100.94 (3)°
  • V = 704.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.27 mm−1
  • T = 290 K
  • 0.54 × 0.35 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.590, T max = 0.879
  • 6437 measured reflections
  • 1616 independent reflections
  • 1432 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.087
  • S = 1.15
  • 1616 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014913/zl2189sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014913/zl2189Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support by the Education Office of Zhejiang Province (grant No. 20051316).

supplementary crystallographic information

Comment

Cobalt(II) ions can form, among others, mononuclear and one-dimensional network complexes (Majumder et al.,2006). In this context we have studied and reported the crystal structures of complexes with halobenzoate ligands, X—C6H4COO-, where X is F, Cl, Br or I, (Zhang, 2004, 2005, 2006a,b,c; Zhang et al., 2005, 2008). In this report we would like to report the synthesis and crystal structure of the title complex, 2∞[Co(H2O)2(FC6H4COO)4/2]. Within the title compound, each CoII atom is located on a crystallographic inversion center and is coordinated by six O atoms from two water molecules and four µ2-carboxyl groups of 4-fluorobenzoic acid anions, to form a distorted CoO6 octahedron, with Co—O bond lengths in the range of 2.071 (2) to 2.130 (2) Å. All adjacent O—Co—O bond angles are in the range of 84.78 (6)–95.22 (6)° and opposite angles are 180.0 (1)°.

Each µ2-carboxyl group of the 4-fluorobenzoic anions bridges two symmetry related cobalt atoms, Co(1) and Co(1)vi (vi: -x + 1, -y, -z + 1). Hydrogen bonding interactions of the coordinated water molecules further connect the cobalt-carboxylate units with each other to form layers perpendicular to the a axis (Fig.2). The O—H···O bond lengths are in the range of 2.83 (2) to 3.12 (1) Å, the O—H···O bond angles are in the range of 139.7 (1) —167.0 (1)°, Table 2. The cobalt-oxygen layers are encased in a sandwich like fashion by layers of π-stacked 4-fluorobenzoate anions. Within these layers τhe the benzene rings of the 4-fluorobenzoate anions are π stacked with centroid to centroidiii (iii = x, 0.5-y, -0.5+z) distances of 3.432 (4)Å.

Experimental

CoCO3 (0.132 g, 1.110 mmol), 4-fluorobenzoic acid (0.085 g, 0.607 mmol) and 15 ml CH3OH/H2O (1:2, v/v) were mixed and stirred for ca 5.0 h, and the resulting suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 6 days. After the autoclave cooled to room temperature, the solid was filtered off. The resulting purple filtrate was allowed to stand at room temperature and slow evaporation over three months gave red block crystals suitable for X-ray analysis. Yield: 76%.

Refinement

C-bound H atoms were placed in calculated positions, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C), and were refined using the riding-model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (1) Å and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The structure unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
View of the title complex along the [100] direction showing the two-dimensional layering.
Fig. 3.
A packing diagram of the title complex, viewed along the b axis. π-π Stacking interactions are indicated as dashed double arrows.

Crystal data

[Co(C7H4FO2)2(H2O)2]F(000) = 378
Mr = 373.17Dx = 1.759 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5552 reflections
a = 14.866 (3) Åθ = 3.4–27.5°
b = 6.6043 (13) ŵ = 1.27 mm1
c = 7.3081 (15) ÅT = 290 K
β = 100.94 (3)°Block, red
V = 704.5 (3) Å30.54 × 0.35 × 0.10 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer1616 independent reflections
Radiation source: fine-focus sealed tube1432 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = −19→19
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −7→8
Tmin = 0.590, Tmax = 0.879l = −9→9
6437 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0337P)2 + 0.6464P] where P = (Fo2 + 2Fc2)/3
1616 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.00000.50000.01947 (14)
O10.60194 (11)0.0944 (2)0.7171 (2)0.0278 (3)
O20.56707 (11)−0.2799 (2)0.5136 (2)0.0285 (3)
H2B0.5729−0.35860.60710.043*
H2A0.5482−0.34440.41300.043*
O30.57083 (10)0.0875 (2)0.2851 (2)0.0260 (3)
F10.98672 (12)0.3394 (4)1.1685 (3)0.0776 (7)
C10.62472 (14)0.2606 (3)0.7934 (3)0.0202 (4)
C20.72091 (14)0.2833 (4)0.8984 (3)0.0255 (4)
C30.75685 (19)0.4727 (4)0.9486 (4)0.0378 (6)
H30.72030.58730.92170.045*
C40.8473 (2)0.4922 (5)1.0391 (5)0.0504 (8)
H40.87250.61901.07200.060*
C50.89849 (18)0.3206 (5)1.0786 (4)0.0487 (7)
C60.86542 (18)0.1311 (5)1.0332 (4)0.0476 (7)
H60.90210.01731.06330.057*
C70.77507 (17)0.1134 (4)0.9404 (4)0.0358 (5)
H70.7509−0.01390.90630.043*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0219 (2)0.0161 (2)0.0191 (2)−0.00099 (14)0.00055 (14)0.00070 (13)
O10.0262 (8)0.0231 (8)0.0306 (8)−0.0007 (6)−0.0034 (6)−0.0042 (6)
O20.0390 (9)0.0198 (8)0.0254 (8)0.0022 (6)0.0027 (6)0.0007 (6)
O30.0287 (8)0.0240 (8)0.0249 (7)−0.0049 (6)0.0041 (6)0.0012 (6)
F10.0302 (9)0.1146 (19)0.0775 (14)−0.0175 (11)−0.0163 (9)−0.0037 (13)
C10.0217 (9)0.0223 (10)0.0169 (9)−0.0031 (8)0.0045 (7)0.0005 (7)
C20.0237 (10)0.0312 (12)0.0212 (10)−0.0044 (9)0.0026 (8)−0.0023 (8)
C30.0354 (13)0.0341 (14)0.0425 (15)−0.0079 (10)0.0036 (11)−0.0060 (11)
C40.0389 (15)0.055 (2)0.0544 (18)−0.0201 (14)0.0005 (13)−0.0115 (13)
C50.0241 (12)0.079 (2)0.0398 (15)−0.0120 (13)−0.0031 (10)−0.0034 (14)
C60.0291 (13)0.0597 (19)0.0491 (16)0.0079 (12)−0.0049 (11)0.0031 (14)
C70.0300 (12)0.0362 (14)0.0378 (13)0.0008 (10)−0.0024 (9)−0.0020 (10)

Geometric parameters (Å, °)

Co1—O1i2.0712 (16)C1—C21.497 (3)
Co1—O12.0712 (16)C2—C71.381 (3)
Co1—O2i2.0938 (16)C2—C31.382 (3)
Co1—O22.0938 (16)C3—C41.387 (4)
Co1—O32.1301 (15)C3—H30.9300
Co1—O3i2.1301 (15)C4—C51.365 (5)
O1—C11.248 (3)C4—H40.9300
O2—H2B0.8500C5—C61.362 (5)
O2—H2A0.8500C6—C71.390 (4)
O3—C1ii1.278 (3)C6—H60.9300
F1—C51.357 (3)C7—H70.9300
C1—O3iii1.278 (3)
O1i—Co1—O1180.00 (10)O1—C1—C2117.95 (19)
O1i—Co1—O2i87.54 (6)O3iii—C1—C2118.37 (18)
O1—Co1—O2i92.46 (6)C7—C2—C3119.8 (2)
O1i—Co1—O292.46 (6)C7—C2—C1119.5 (2)
O1—Co1—O287.54 (6)C3—C2—C1120.7 (2)
O2i—Co1—O2180.00 (9)C2—C3—C4120.1 (3)
O1i—Co1—O384.78 (6)C2—C3—H3120.0
O1—Co1—O395.22 (6)C4—C3—H3120.0
O2i—Co1—O391.33 (6)C5—C4—C3118.4 (3)
O2—Co1—O388.67 (6)C5—C4—H4120.8
O1i—Co1—O3i95.22 (6)C3—C4—H4120.8
O1—Co1—O3i84.78 (6)F1—C5—C6118.3 (3)
O2i—Co1—O3i88.67 (6)F1—C5—C4118.4 (3)
O2—Co1—O3i91.33 (6)C6—C5—C4123.4 (2)
O3—Co1—O3i180.00 (6)C5—C6—C7117.8 (3)
C1—O1—Co1134.73 (14)C5—C6—H6121.1
Co1—O2—H2B123.6C7—C6—H6121.1
Co1—O2—H2A109.0C2—C7—C6120.6 (3)
H2B—O2—H2A110.8C2—C7—H7119.7
C1ii—O3—Co1124.82 (13)C6—C7—H7119.7
O1—C1—O3iii123.68 (19)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2B···O3iv0.852.002.833 (2)167
O2—H2A···O3v0.852.112.835 (2)143
O2—H2A···O1vi0.852.423.115 (1)140

Symmetry codes: (iv) x, −y−1/2, z+1/2; (v) −x+1, y−1/2, −z+1/2; (vi) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2189).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Majumder, A., Gramlich, V., Rosair, G. M., Batten, S. R., Masuda, J. D., Fallah, M. S. E., Ribas, J., Sutter, J.-P., Desplanches, C. & Mitra, S. (2006). Cryst. Growth Des.6, 2355–2368.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J. M., Cheng, P., Miao, M. M., Jiang, Z. H., Liu, Y. J. & Wang, G. L. (1996). J. Inorg. Chem.12, 372–376.
  • Zhang, B.-S. (2004). Z. Kristallogr. New Cryst. Struct.219, 141–142.
  • Zhang, B.-S. (2005). Z. Kristallogr. New Cryst. Struct.220, 73–74.
  • Zhang, B.-S. (2006a). Acta Cryst. E62, m2645–m2647.
  • Zhang, B.-S. (2006b). Z. Kristallogr. New Cryst. Struct.221, 191–194.
  • Zhang, B. S. (2006c). Z. Kristallogr. New Cryst. Struct.221, 355–356.
  • Zhang, B.-S., Wu, C. S. & Wang, Y. H. (2008). Chin. J. Struct. Chem.27, 1360–1364.
  • Zhang, B.-S., Zeng, X.-R., Yu, Y.-Y., Fang, X.-N. & Huang, C.-F. (2005a). Z. Kristallogr. New Cryst. Struct.220, 75–76.
  • Zhang, B.-S., Zhu, X.-C., Yu, Y.-Y., Chen, L., Chen, Z.-B. & Hu, Y.-M. (2005b). Z. Kristallogr. New Cryst. Struct.220, 211–212.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography