PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m579.
Published online 2009 April 30. doi:  10.1107/S1600536809015013
PMCID: PMC2977621

(Diethyl­enetriamine)bis­(theophyllinato)zinc(II) dihydrate

Abstract

In the title compound, [Zn(C7H7N4O2)2(C4H13N3)]·2H2O, the ZnII ion is penta­coordinated by three N atoms of the diethyl­enetriamine ligand and one N atom of each of the two theophyllinate anions in a distorted trigonal-bipyramidal geometry. The Zn—N distances range from 2.076 (3) to 2.221 (3) Å. The crystal packing is stabilized by O—H(...)O, O—H(...)N and N—H(...)O hydrogen bonds involving the theophylline and diethyl­enetriamine ligands and uncoordinated water mol­ecules.

Related literature

For the isostructural copper(II) compound, see Sorrell et al. (1976 [triangle]). For the theophylline mol­ecule acting as a monodentate anionic ligand, see: Begum & Manohar (1994 [triangle]); Birdsall & Zitzman (1979 [triangle]); Bombicz et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m579-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H7N4O2)2(C4H13N3)]·2H2O
  • M r = 562.91
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m579-efi1.jpg
  • a = 18.4655 (13) Å
  • b = 8.2603 (6) Å
  • c = 15.9252 (12) Å
  • β = 98.904 (1)°
  • V = 2399.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.08 mm−1
  • T = 297 K
  • 0.26 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.766, T max = 0.854
  • 16801 measured reflections
  • 4214 independent reflections
  • 3800 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.115
  • S = 1.15
  • 4214 reflections
  • 349 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015013/fi2075sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015013/fi2075Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Richard Attila Varga and the National Center for X-ray Diffraction in Cluj-Napoca for assistance with the structure determination.

supplementary crystallographic information

Comment

Research concerning transition metal complexes of theophylline have attracted considerable interest because they serve as model compounds for the study of the interaction between metal ions and oxopurine bases of nucleic acids. In basic media, the theophylline molecule acts as a monodentate anionic ligand and coordinates through the N(7) atom (Begum et al.,1994; Birdsall & Zitzman, 1979; Bombicz et al., 1997). We report here the crystal structure of (diethylenetriamine)bis(theophyllinato)zinc(II) dihydrate containing deprotonated theophyllinato anion ligands. The diethylenetriamine acts as a tridentate chelating ligand. The crystal structure is built of discrete molecules of the Zn(II) complex (Fig. 1). The Zn(II) ion is five-coordinate in a distorted trigonal-bipyramidal environment. The terminal nitrogen atoms of diethylenetriamine and the N3 nitrogen atom of one theophyllinato ion define the equatorial plane. The second theophyllinato anion and the middle nitrogen atom of diethylenetriamine occupy the axial positions, with a N7—Zn1—N10 angle of 165.13 (12)°.

The isostructural copper(II) complex had been described earlier (Sorrell et al., 1976).

Experimental

To a suspension of theophylline (0.4 g, 2.22 mmol) in water (15 cm3), diethylenetriamine (0.5 cm3) was added. The obtained clear solution was mixed with a solution of Zn(CH3COO)2 .2 H2O (0.2195 g, 1 mmol) in a diethylenetriamine–water mixture (1 cm3 of diethylenetriamine in 5 cm3 of water). The reaction mixture was stirred at 50°C for 30 min. and stored at room temperature over night. The white polycrystalline powder formed was collected by filtration, washed with aqueous diethylenetriamine (5%) and dried. Colourless single crystals were obtained by recrystallization from aqueous solutions after standing at room temperature 6 days.

Refinement

All hydrogen atoms except those in the two water molecules were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso= 1.5Ueq (C) for methyl H and Uiso= 1.2Ueq (C) for aryl H. The methyl groups were allowed to rotate but not to tip. Hydrogen atoms from the two water molecules were found from difference map and refined with a restrained O—H distance of 0.82 (2) Å, 0.825 (19), 0.82 (2)Å and 0.814 (19) Å, respectively.

Figures

Fig. 1.
Molecular structure of the title compound with displacement ellipsoids at the 50% probability level.

Crystal data

[Zn(C7H7N4O2)2(C4H13N3)]·2H2OF(000) = 1176
Mr = 562.91Dx = 1.558 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3820 reflections
a = 18.4655 (13) Åθ = 2.6–22.8°
b = 8.2603 (6) ŵ = 1.08 mm1
c = 15.9252 (12) ÅT = 297 K
β = 98.904 (1)°Block, colourless
V = 2399.8 (3) Å30.26 × 0.25 × 0.15 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer4214 independent reflections
Radiation source: fine-focus sealed tube3800 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −21→21
Tmin = 0.766, Tmax = 0.854k = −9→9
16801 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.15w = 1/[σ2(Fo2) + (0.0449P)2 + 2.691P] where P = (Fo2 + 2Fc2)/3
4214 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 0.53 e Å3
5 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
H20.090 (3)0.882 (7)0.814 (4)0.12 (3)*
H10.111 (3)1.030 (3)0.801 (3)0.064 (15)*
H30.3221 (19)0.383 (6)0.733 (3)0.077 (19)*
H40.303 (3)0.295 (5)0.670 (3)0.066 (16)*
C10.36750 (17)0.4373 (4)0.9496 (2)0.0274 (7)
C20.38322 (18)0.3506 (4)1.0237 (2)0.0285 (7)
C30.4959 (2)0.2550 (4)0.9884 (2)0.0354 (8)
C40.41449 (18)0.4342 (4)0.8878 (2)0.0315 (8)
C50.28123 (19)0.4589 (4)1.0227 (2)0.0339 (8)
H50.23720.48921.03970.041*
C60.4625 (3)0.1727 (5)1.1240 (3)0.0562 (12)
H6A0.51460.16341.14060.084*
H6B0.44120.06661.11680.084*
H6C0.44190.22981.16720.084*
C70.5323 (2)0.3326 (5)0.8547 (3)0.0483 (10)
H7A0.58090.33890.88630.072*
H7B0.52470.42050.81490.072*
H7C0.52640.23160.82450.072*
C80.06859 (17)0.5122 (4)0.8720 (2)0.0276 (7)
C90.04497 (18)0.3547 (4)0.8627 (2)0.0287 (7)
C10−0.07285 (18)0.4197 (4)0.8940 (2)0.0304 (8)
C110.02094 (18)0.6365 (4)0.8909 (2)0.0297 (8)
C120.1516 (2)0.3635 (4)0.8352 (3)0.0387 (9)
H120.19590.33090.81970.046*
C13−0.0440 (2)0.1359 (4)0.8707 (3)0.0462 (10)
H13A−0.08500.11760.89990.069*
H13B−0.00340.07040.89590.069*
H13C−0.05730.10740.81190.069*
C14−0.1046 (2)0.7002 (5)0.9130 (3)0.0489 (11)
H14A−0.14530.69210.86770.073*
H14B−0.08370.80660.91310.073*
H14C−0.12120.68100.96630.073*
C150.3002 (3)0.7952 (6)0.7322 (3)0.0603 (13)
H15A0.29260.83330.67390.072*
H15B0.34460.73080.74120.072*
C160.3077 (3)0.9341 (6)0.7908 (3)0.0646 (14)
H16A0.26701.00800.77500.077*
H16B0.35270.99170.78620.077*
C170.2874 (3)1.0025 (6)0.9349 (4)0.0683 (14)
H17A0.25251.07550.90250.082*
H17B0.33001.06520.95880.082*
C180.2545 (3)0.9303 (7)1.0032 (3)0.0739 (15)
H18A0.23491.01501.03530.089*
H18B0.29180.87271.04140.089*
N10.44707 (15)0.2614 (4)1.04420 (18)0.0335 (7)
N20.47870 (15)0.3428 (4)0.91318 (18)0.0340 (7)
N30.29968 (14)0.5092 (3)0.94963 (18)0.0305 (6)
N40.32938 (16)0.3619 (3)1.07095 (18)0.0338 (7)
N5−0.02331 (15)0.3060 (3)0.87753 (19)0.0318 (7)
N6−0.04898 (14)0.5793 (3)0.90045 (18)0.0310 (6)
N70.13966 (15)0.5172 (3)0.85451 (19)0.0322 (7)
N80.09705 (15)0.2580 (4)0.8390 (2)0.0373 (7)
N90.23797 (17)0.6963 (4)0.74736 (19)0.0414 (8)
H9A0.24190.59730.72490.050*
H9B0.19630.74150.72080.050*
N100.30890 (18)0.8803 (4)0.8791 (2)0.0423 (8)
N110.19553 (17)0.8177 (4)0.9694 (2)0.0401 (7)
H11A0.15540.87340.94670.048*
H11B0.18380.75521.01160.048*
O10.55292 (14)0.1781 (3)1.00333 (18)0.0511 (7)
O20.40477 (14)0.4991 (4)0.81732 (16)0.0483 (7)
O3−0.13559 (13)0.3833 (3)0.90348 (17)0.0390 (6)
O40.03442 (14)0.7823 (3)0.89879 (19)0.0457 (7)
O50.11729 (18)0.9342 (4)0.7883 (2)0.0525 (7)
O60.2845 (2)0.3503 (5)0.7033 (2)0.0656 (9)
Zn10.23190 (2)0.67315 (5)0.87641 (2)0.02884 (14)
H100.3487 (14)0.837 (4)0.899 (2)0.034 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0239 (17)0.0277 (17)0.0301 (18)−0.0005 (14)0.0028 (14)−0.0007 (14)
C20.0288 (18)0.0260 (17)0.0304 (18)−0.0010 (14)0.0036 (14)−0.0025 (14)
C30.0291 (19)0.039 (2)0.036 (2)0.0001 (16)−0.0010 (15)−0.0070 (16)
C40.0286 (18)0.0322 (19)0.0332 (19)−0.0001 (15)0.0026 (15)−0.0018 (15)
C50.0290 (19)0.0335 (19)0.041 (2)0.0038 (15)0.0124 (16)0.0039 (16)
C60.058 (3)0.063 (3)0.046 (2)0.022 (2)0.001 (2)0.020 (2)
C70.038 (2)0.067 (3)0.043 (2)0.004 (2)0.0171 (18)−0.006 (2)
C80.0238 (17)0.0244 (17)0.0352 (19)0.0013 (13)0.0062 (14)0.0029 (14)
C90.0250 (17)0.0251 (17)0.0364 (19)−0.0020 (14)0.0055 (14)−0.0019 (14)
C100.0270 (18)0.0306 (18)0.0340 (19)0.0015 (15)0.0063 (15)0.0035 (15)
C110.0251 (18)0.0255 (18)0.0388 (19)0.0033 (14)0.0056 (15)0.0042 (14)
C120.0279 (19)0.031 (2)0.058 (2)−0.0012 (15)0.0122 (17)−0.0094 (17)
C130.041 (2)0.0244 (19)0.076 (3)−0.0059 (16)0.016 (2)−0.0028 (19)
C140.034 (2)0.034 (2)0.082 (3)0.0075 (17)0.020 (2)−0.001 (2)
C150.055 (3)0.079 (3)0.051 (3)−0.008 (2)0.018 (2)0.025 (2)
C160.055 (3)0.061 (3)0.079 (3)−0.014 (2)0.012 (2)0.037 (3)
C170.069 (3)0.039 (2)0.098 (4)−0.022 (2)0.017 (3)−0.013 (3)
C180.087 (4)0.070 (3)0.066 (3)−0.027 (3)0.019 (3)−0.030 (3)
N10.0323 (16)0.0346 (16)0.0322 (16)0.0086 (13)0.0007 (13)0.0038 (13)
N20.0273 (15)0.0428 (18)0.0329 (16)0.0022 (13)0.0073 (12)−0.0020 (13)
N30.0238 (14)0.0297 (15)0.0376 (16)0.0020 (12)0.0031 (12)0.0070 (13)
N40.0340 (16)0.0342 (16)0.0346 (16)0.0023 (13)0.0097 (13)0.0046 (13)
N50.0281 (15)0.0236 (14)0.0450 (17)−0.0029 (12)0.0095 (13)0.0013 (12)
N60.0219 (14)0.0273 (15)0.0456 (17)0.0038 (12)0.0111 (13)0.0034 (13)
N70.0239 (15)0.0273 (15)0.0469 (18)−0.0017 (12)0.0103 (13)−0.0022 (13)
N80.0282 (16)0.0282 (16)0.057 (2)−0.0001 (13)0.0113 (14)−0.0079 (14)
N90.0367 (17)0.0494 (19)0.0383 (18)0.0024 (15)0.0058 (14)0.0081 (15)
N100.0326 (18)0.0337 (17)0.059 (2)−0.0045 (15)0.0026 (16)0.0033 (16)
N110.0415 (18)0.0365 (17)0.0432 (18)0.0012 (14)0.0092 (14)−0.0008 (14)
O10.0320 (15)0.0621 (19)0.0577 (18)0.0190 (14)0.0019 (13)−0.0007 (14)
O20.0422 (16)0.0691 (19)0.0353 (15)0.0063 (14)0.0111 (12)0.0141 (14)
O30.0256 (13)0.0393 (14)0.0547 (16)−0.0036 (11)0.0146 (11)0.0010 (12)
O40.0357 (14)0.0243 (13)0.080 (2)−0.0025 (11)0.0175 (14)−0.0025 (13)
O50.062 (2)0.0422 (18)0.0586 (19)0.0043 (16)0.0245 (16)−0.0083 (15)
O60.054 (2)0.081 (3)0.063 (2)0.0078 (19)0.0140 (18)−0.0266 (19)
Zn10.0249 (2)0.0272 (2)0.0351 (2)−0.00167 (16)0.00696 (16)0.00309 (17)

Geometric parameters (Å, °)

C1—C21.372 (5)C13—H13A0.9600
C1—N31.386 (4)C13—H13B0.9600
C1—C41.410 (5)C13—H13C0.9600
C2—N41.339 (4)C14—N61.468 (4)
C2—N11.386 (4)C14—H14A0.9600
C3—O11.221 (4)C14—H14B0.9600
C3—N11.362 (5)C14—H14C0.9600
C3—N21.393 (5)C15—N91.459 (5)
C4—O21.231 (4)C15—C161.472 (7)
C4—N21.411 (4)C15—H15A0.9700
C5—N31.329 (4)C15—H15B0.9700
C5—N41.346 (4)C16—N101.472 (6)
C5—H50.9300C16—H16A0.9700
C6—N11.456 (5)C16—H16B0.9700
C6—H6A0.9600C17—N101.441 (6)
C6—H6B0.9600C17—C181.454 (7)
C6—H6C0.9600C17—H17A0.9700
C7—N21.463 (4)C17—H17B0.9700
C7—H7A0.9600C18—N111.469 (5)
C7—H7B0.9600C18—H18A0.9700
C7—H7C0.9600C18—H18B0.9700
C8—C91.373 (5)N3—Zn12.076 (3)
C8—N71.384 (4)N7—Zn12.121 (3)
C8—C111.415 (4)N9—Zn12.084 (3)
C9—N81.348 (4)N9—H9A0.9000
C9—N51.378 (4)N9—H9B0.9000
C10—O31.229 (4)N10—Zn12.221 (3)
C10—N51.365 (4)N10—H100.834 (19)
C10—N61.388 (4)N11—Zn12.093 (3)
C11—O41.232 (4)N11—H11A0.9000
C11—N61.405 (4)N11—H11B0.9000
C12—N71.333 (4)O5—H20.82 (6)
C12—N81.341 (5)O5—H10.825 (19)
C12—H120.9300O6—H30.82 (2)
C13—N51.456 (4)O6—H40.81 (5)
C2—C1—N3107.1 (3)N10—C16—H16B109.5
C2—C1—C4121.4 (3)H16A—C16—H16B108.1
N3—C1—C4131.4 (3)N10—C17—C18111.2 (4)
N4—C2—C1111.7 (3)N10—C17—H17A109.4
N4—C2—N1125.7 (3)C18—C17—H17A109.4
C1—C2—N1122.6 (3)N10—C17—H17B109.4
O1—C3—N1122.0 (3)C18—C17—H17B109.4
O1—C3—N2120.9 (3)H17A—C17—H17B108.0
N1—C3—N2117.0 (3)C17—C18—N11111.0 (4)
O2—C4—C1127.6 (3)C17—C18—H18A109.4
O2—C4—N2119.5 (3)N11—C18—H18A109.4
C1—C4—N2112.9 (3)C17—C18—H18B109.4
N3—C5—N4116.7 (3)N11—C18—H18B109.4
N3—C5—H5121.6H18A—C18—H18B108.0
N4—C5—H5121.6C3—N1—C2119.5 (3)
N1—C6—H6A109.5C3—N1—C6119.4 (3)
N1—C6—H6B109.5C2—N1—C6121.1 (3)
H6A—C6—H6B109.5C3—N2—C4126.5 (3)
N1—C6—H6C109.5C3—N2—C7115.5 (3)
H6A—C6—H6C109.5C4—N2—C7118.0 (3)
H6B—C6—H6C109.5C5—N3—C1102.7 (3)
N2—C7—H7A109.5C5—N3—Zn1118.8 (2)
N2—C7—H7B109.5C1—N3—Zn1138.2 (2)
H7A—C7—H7B109.5C2—N4—C5101.7 (3)
N2—C7—H7C109.5C10—N5—C9119.3 (3)
H7A—C7—H7C109.5C10—N5—C13120.2 (3)
H7B—C7—H7C109.5C9—N5—C13120.4 (3)
C9—C8—N7107.6 (3)C10—N6—C11126.7 (3)
C9—C8—C11120.9 (3)C10—N6—C14115.8 (3)
N7—C8—C11131.4 (3)C11—N6—C14117.4 (3)
N8—C9—C8111.3 (3)C12—N7—C8102.4 (3)
N8—C9—N5125.9 (3)C12—N7—Zn1117.3 (2)
C8—C9—N5122.8 (3)C8—N7—Zn1138.4 (2)
O3—C10—N5121.9 (3)C12—N8—C9101.6 (3)
O3—C10—N6121.2 (3)C15—N9—Zn1112.2 (3)
N5—C10—N6117.0 (3)C15—N9—H9A109.2
O4—C11—N6119.5 (3)Zn1—N9—H9A109.2
O4—C11—C8127.5 (3)C15—N9—H9B109.2
N6—C11—C8113.0 (3)Zn1—N9—H9B109.2
N7—C12—N8117.1 (3)H9A—N9—H9B107.9
N7—C12—H12121.4C17—N10—C16114.4 (4)
N8—C12—H12121.4C17—N10—Zn1108.4 (3)
N5—C13—H13A109.5C16—N10—Zn1107.4 (3)
N5—C13—H13B109.5C17—N10—H10112 (3)
H13A—C13—H13B109.5C16—N10—H10112 (3)
N5—C13—H13C109.5Zn1—N10—H10102 (3)
H13A—C13—H13C109.5C18—N11—Zn1108.6 (3)
H13B—C13—H13C109.5C18—N11—H11A110.0
N6—C14—H14A109.5Zn1—N11—H11A110.0
N6—C14—H14B109.5C18—N11—H11B110.0
H14A—C14—H14B109.5Zn1—N11—H11B110.0
N6—C14—H14C109.5H11A—N11—H11B108.3
H14A—C14—H14C109.5H2—O5—H1105 (6)
H14B—C14—H14C109.5H3—O6—H498 (5)
N9—C15—C16109.3 (4)N3—Zn1—N9119.60 (12)
N9—C15—H15A109.8N3—Zn1—N11101.91 (12)
C16—C15—H15A109.8N9—Zn1—N11135.87 (13)
N9—C15—H15B109.8N3—Zn1—N795.46 (11)
C16—C15—H15B109.8N9—Zn1—N793.33 (12)
H15A—C15—H15B108.3N11—Zn1—N797.20 (12)
C15—C16—N10110.9 (4)N3—Zn1—N1099.41 (12)
C15—C16—H16A109.5N9—Zn1—N1079.40 (13)
N10—C16—H16A109.5N11—Zn1—N1079.72 (13)
C15—C16—H16B109.5N7—Zn1—N10165.13 (12)
N3—C1—C2—N40.4 (4)O3—C10—N6—C14−4.2 (5)
C4—C1—C2—N4−175.9 (3)N5—C10—N6—C14176.4 (3)
N3—C1—C2—N1179.3 (3)O4—C11—N6—C10−179.7 (3)
C4—C1—C2—N13.0 (5)C8—C11—N6—C100.7 (5)
C2—C1—C4—O2175.9 (4)O4—C11—N6—C144.6 (5)
N3—C1—C4—O20.6 (6)C8—C11—N6—C14−174.9 (3)
C2—C1—C4—N2−3.4 (5)N8—C12—N7—C8−0.8 (4)
N3—C1—C4—N2−178.7 (3)N8—C12—N7—Zn1166.3 (3)
N7—C8—C9—N8−0.8 (4)C9—C8—N7—C120.9 (4)
C11—C8—C9—N8175.6 (3)C11—C8—N7—C12−174.9 (4)
N7—C8—C9—N5178.4 (3)C9—C8—N7—Zn1−161.7 (3)
C11—C8—C9—N5−5.3 (5)C11—C8—N7—Zn122.4 (6)
C9—C8—C11—O4−178.1 (4)N7—C12—N8—C90.4 (4)
N7—C8—C11—O4−2.7 (6)C8—C9—N8—C120.3 (4)
C9—C8—C11—N61.5 (5)N5—C9—N8—C12−178.8 (3)
N7—C8—C11—N6176.9 (3)C16—C15—N9—Zn1−40.5 (4)
N9—C15—C16—N1051.5 (5)C18—C17—N10—C16151.2 (4)
N10—C17—C18—N11−51.8 (6)C18—C17—N10—Zn131.4 (5)
O1—C3—N1—C2−179.9 (3)C15—C16—N10—C17−156.8 (4)
N2—C3—N1—C21.0 (5)C15—C16—N10—Zn1−36.5 (4)
O1—C3—N1—C6−0.6 (5)C17—C18—N11—Zn144.9 (5)
N2—C3—N1—C6−179.7 (3)C5—N3—Zn1—N9−159.7 (2)
N4—C2—N1—C3177.2 (3)C1—N3—Zn1—N927.1 (4)
C1—C2—N1—C3−1.6 (5)C5—N3—Zn1—N1135.9 (3)
N4—C2—N1—C6−2.2 (5)C1—N3—Zn1—N11−137.4 (3)
C1—C2—N1—C6179.1 (3)C5—N3—Zn1—N7−62.7 (3)
O1—C3—N2—C4179.0 (3)C1—N3—Zn1—N7124.1 (3)
N1—C3—N2—C4−2.0 (5)C5—N3—Zn1—N10117.2 (3)
O1—C3—N2—C71.1 (5)C1—N3—Zn1—N10−56.0 (4)
N1—C3—N2—C7−179.8 (3)C15—N9—Zn1—N3−79.2 (3)
O2—C4—N2—C3−176.3 (3)C15—N9—Zn1—N1178.7 (3)
C1—C4—N2—C33.1 (5)C15—N9—Zn1—N7−177.4 (3)
O2—C4—N2—C71.5 (5)C15—N9—Zn1—N1015.6 (3)
C1—C4—N2—C7−179.1 (3)C18—N11—Zn1—N377.1 (3)
N4—C5—N3—C10.1 (4)C18—N11—Zn1—N9−83.3 (3)
N4—C5—N3—Zn1−175.3 (2)C18—N11—Zn1—N7174.3 (3)
C2—C1—N3—C5−0.2 (4)C18—N11—Zn1—N10−20.4 (3)
C4—C1—N3—C5175.5 (4)C12—N7—Zn1—N3−43.4 (3)
C2—C1—N3—Zn1173.7 (3)C8—N7—Zn1—N3117.4 (3)
C4—C1—N3—Zn1−10.5 (6)C12—N7—Zn1—N976.8 (3)
C1—C2—N4—C5−0.3 (4)C8—N7—Zn1—N9−122.4 (4)
N1—C2—N4—C5−179.2 (3)C12—N7—Zn1—N11−146.2 (3)
N3—C5—N4—C20.1 (4)C8—N7—Zn1—N1114.6 (4)
O3—C10—N5—C9176.3 (3)C12—N7—Zn1—N10136.8 (5)
N6—C10—N5—C9−4.2 (5)C8—N7—Zn1—N10−62.4 (7)
O3—C10—N5—C130.0 (5)C17—N10—Zn1—N3−106.1 (3)
N6—C10—N5—C13179.4 (3)C16—N10—Zn1—N3129.9 (3)
N8—C9—N5—C10−174.3 (3)C17—N10—Zn1—N9135.3 (3)
C8—C9—N5—C106.7 (5)C16—N10—Zn1—N911.3 (3)
N8—C9—N5—C132.1 (5)C17—N10—Zn1—N11−5.6 (3)
C8—C9—N5—C13−176.9 (3)C16—N10—Zn1—N11−129.6 (3)
O3—C10—N6—C11−179.9 (3)C17—N10—Zn1—N773.7 (6)
N5—C10—N6—C110.7 (5)C16—N10—Zn1—N7−50.4 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1···N8i0.83 (2)2.01 (3)2.835 (5)177 (3)
O5—H2···O40.82 (6)2.00 (6)2.801 (5)167 (6)
O6—H3···O20.82 (2)2.10 (4)2.914 (4)169 (4)
O6—H4···N4ii0.81 (5)2.16 (6)2.957 (5)168 (4)
N9—H9A···O60.902.233.096 (5)161
N9—H9B···O3iii0.902.423.213 (4)147 (2)
N11—H11B···O3iv0.902.072.962 (4)169 (2)
N10—H10···O1v0.84 (3)2.21 (3)2.961 (4)151 (2)

Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z+3/2; (iv) −x, −y+1, −z+2; (v) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2075).

References

  • Begum, N. S. & Manohar, H. (1994). Polyhedron, 13, 307–312.
  • Birdsall, W. J. & Zitzman, M. S. (1979). J. Inorg. Nucl. Chem.41, 116–117.
  • Bombicz, P., Madarász, J., Forizs, E. & Foch, I. (1997). Polyhedron, 16, 3601–3607.
  • Brandenburg, K. & Putz, H. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sorrell, T., Marzilli, L. G. & Kistenmacher, T. J. (1976). J. Am. Chem. Soc.98, 2181–2188. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography