PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m578.
Published online 2009 April 30. doi:  10.1107/S1600536809014573
PMCID: PMC2977620

(2,2′-Bipyridine)(2-{1-[2-(dimethyl­amino)ethyl­imino]eth­yl}-4-methoxy­phenolato)copper(II) perchlorate

Abstract

The Cu atom of the title complex, [Cu(C13H19N2O2)(C10H8N2)]ClO4, has a distorted square-pyramidal geometry with all three of the donor atoms from the N,N′,O-tridentate Schiff base ligand in the equatorial positions and the bipyridine N atoms in an equatorial–axial binding mode. The Cu atom is 0.1801 (11) Å above the N3O mean basal plane.

Related literature

For the development of efficient catalytic systems for the coupling of CO2 with heterocycles into polycarbonates, see: Inoue et al. (1969 [triangle]). For the synthesis and catalytic studies of a series of bis­–(salicylaldiminato)zinc complexes, see: Darensbourg et al. (2001 [triangle]). For similar complexes, see: Dhar et al. (2006 [triangle]); Shen et al. (2003 [triangle]). For the synthesis, see: Hung & Lin (2009 [triangle]); Hung et al. (2008 [triangle]); For the chemical activity of complexes, see: Noh et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m578-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H19N2O2)(C10H8N2)]ClO4
  • M r = 554.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m578-efi1.jpg
  • a = 10.1588 (10) Å
  • b = 18.2163 (17) Å
  • c = 13.3764 (13) Å
  • β = 92.610 (2)°
  • V = 2472.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 293 K
  • 0.34 × 0.26 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.719, T max = 0.860
  • 13946 measured reflections
  • 4859 independent reflections
  • 3488 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.105
  • S = 0.98
  • 4859 reflections
  • 319 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014573/rk2135sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014573/rk2135Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the National Science Council of the Republic of China is gratefully appreciated. Helpful comments from the reviewers are also greatly appreciated.

supplementary crystallographic information

Comment

Though many bacteria convert CO2 into organic compounds by photosynthesis, utilization of CO2 as a chemical feedstock in industrial and laboratory is rare. Recently, reuse of CO2 has received great attention because of environmental concern. Polycarbonates (PC) have been wildly used in the modern chemical industry. Co–polymerization of CO2 with olefins may benefit from reducing the release of CO2 and generating potential industrial useful PCs. Therefore, there has been increasing interest in the development of efficient catalytic systems for the coupling of CO2 with heterocycles into polycarbonates (Inoue et al., 1969). One of the major successes is the utilization of epoxides and CO2 as starting materials to prepare PCs and/or cyclic carbonates in the presence of a transition metal catalyst. Recently, Darensbourg et al., (2001) disclosed the synthesis, characterization and catalytic studies of a series of bis–(salicylaldiminato)zinc complexes, in which the most active catalyst for co–polymerization of cyclohexene oxide and CO2 giving poly(cyclohexene carbonate) (>99% carbonate linkages, Mn = 41000 g.mol-1, Mw/Mn = 10.3) with a turnover frequency of 6.9 h-1. In addition, Shen et al. (2003) reported that binaphthyldiaminosalen–type Zn, Cu, and Co complexes efficiently catalyzed reactions of epoxides with CO2 to achieve five–membered ring cyclic carbonates in the presence of various catalytic amounts of organic bases. Noh et al., (2007) disclosed catalytic studies of the binary system of [(salen)Co(III)complex] / (quaternary ammonium salt) for co–polymerization of propylene oxide and CO2. Most recently, a series of N,N,O–tridentate Schiff base zinc– and magnesium–complexes have been reported to be effective initiators / catalyst for ROP of lactide (Hung et al., 2008; Hung & Lin, 2009). We report herein the synthesis and crystal structure of [LCu(bipy)]ClO4, where L is title tridentate ligand and bipy is 2,2'–bipyridine, a potential catalyst for CO2 / epoxide coupling co–polymerization.

The solid structure of [LCu(bipy)]+ ion reveals a monomeric CuII complex containing a six–member and a five–member ring coordinated from the tridentate salicylideneiminate ligand and a five–member ring coordinated from the bipyridine ligand. The geometry around Cu atom is penta–coordinated with a slight distorted square pyramidal environment in which all three of the N,N,O–tridentate donor atoms and one of the N atoms of the bipyridine lignad sitting on the equatorial plane, and another N atom of the bipyridine ligand at the axial position. The distances between the Cu atom and O1, N1, N2, N3 and N4 are 1.903 (2), 1.964 (2), 2.076 (2), 2.208 (2) and 2.044 (2) Å, respectively which are all within a normal distance for a Cu—O and Cu—N distance. These bond distances are similar to those found in other Schiff base CuII complexes (Dhar et al., 2006).

Experimental

The ligand, 2–{1–[2–(dimethylamino)ethylimino]ethyl}–4–methoxyphenol was prepared according to the method reported previously (Hung et al., 2008). The title complex was synthesized by the following procedures: Cu(OAc)2.H2O (0.197 g, 1.00 mmol) and 2,2'–bipyridine (0.199 g, 1.28 mmol) was stirred in EtOH (15 ml) at room temperature for 0.5 h. The 2–{1–[2–(dimethylamino)ethylimino]ethyl}–4–methoxyphenol (0.298 g, 1.0 mmol) in EtOH (10 ml) was added. The reaction mixture was then stirred for another 1 h, and an 10 ml ethanolic solution of NaClO4 (0.122 g, 1.0 mmol) was added producing green precipitate. The product was isolated by filtration and the resulting precipitate was crystallized from EtOH to yield green crystals.

Refinement

The methyl H atoms were located and then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93 Å and 0.97 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the molecular structure with the atom numbering scheme. The displacement ellipsoids are shown at the 20% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

[Cu(C13H19N2O2)(C10H8N2)]ClO4F(000) = 1148
Mr = 554.49Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4710 reflections
a = 10.1588 (10) Åθ = 2.3–25.6°
b = 18.2163 (17) ŵ = 1.04 mm1
c = 13.3764 (13) ÅT = 293 K
β = 92.610 (2)°Parallelpiped, green
V = 2472.8 (4) Å30.34 × 0.26 × 0.15 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer4859 independent reflections
Radiation source: fine–focus sealed tube3488 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.719, Tmax = 0.860k = −22→16
13946 measured reflectionsl = −16→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.06P)2] where P = (Fo2 + 2Fc2)/3
4859 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.62390 (3)0.172001 (16)0.82971 (2)0.04095 (12)
O10.6832 (2)0.15346 (10)0.96441 (14)0.0532 (5)
O20.9049 (3)−0.10697 (14)1.0997 (2)0.1017 (10)
N10.5494 (2)0.07290 (12)0.81586 (16)0.0457 (5)
N20.4979 (2)0.19843 (13)0.70841 (18)0.0528 (6)
N30.8094 (2)0.16361 (12)0.75071 (17)0.0469 (6)
N40.6989 (2)0.27569 (11)0.84447 (15)0.0412 (5)
C10.7293 (3)0.08881 (15)0.9916 (2)0.0455 (6)
C20.8227 (3)0.08568 (17)1.0724 (2)0.0583 (8)
H2A0.84830.12931.10390.070*
C30.8779 (4)0.02114 (19)1.1069 (2)0.0681 (9)
H3A0.93950.02151.16050.082*
C40.8411 (4)−0.04469 (18)1.0612 (2)0.0665 (9)
C50.7497 (3)−0.04455 (16)0.9842 (2)0.0576 (8)
H5A0.7257−0.08900.95440.069*
C60.6895 (3)0.02080 (15)0.94751 (19)0.0439 (6)
C70.5849 (3)0.01591 (15)0.8687 (2)0.0447 (7)
C80.5192 (3)−0.05759 (16)0.8497 (2)0.0605 (8)
H8A0.5193−0.08500.91110.079 (10)*
H8B0.5666−0.08440.80110.102 (13)*
H8C0.4300−0.05000.82500.098 (13)*
C90.4456 (3)0.06785 (18)0.7363 (2)0.0629 (8)
H9A0.35990.07520.76390.075*
H9B0.44690.01970.70540.075*
C100.4709 (3)0.12658 (16)0.6597 (2)0.0603 (8)
H10A0.54570.11250.62140.072*
H10B0.39470.13090.61370.072*
C110.3779 (4)0.2319 (2)0.7440 (3)0.0901 (13)
H11A0.31970.24410.68790.135*
H11B0.40020.27580.78090.135*
H11C0.33490.19800.78670.135*
C120.5537 (4)0.24885 (18)0.6336 (2)0.0728 (10)
H12A0.48890.25790.58050.109*
H12B0.63010.22670.60660.109*
H12C0.57810.29440.66540.109*
C130.8909 (5)−0.1720 (2)1.0445 (3)0.1034 (15)
H13A0.9394−0.21061.07830.155*
H13B0.9244−0.16480.97920.155*
H13C0.7994−0.18521.03800.155*
C140.8536 (3)0.10711 (16)0.6971 (2)0.0578 (8)
H14A0.80760.06300.69760.069*
C150.9634 (3)0.11167 (19)0.6418 (2)0.0630 (9)
H15A0.99030.07180.60450.076*
C161.0329 (3)0.1763 (2)0.6427 (3)0.0689 (9)
H16A1.10760.18090.60550.083*
C170.9908 (3)0.23447 (17)0.6995 (2)0.0572 (8)
H17A1.03790.27830.70210.069*
C180.8784 (3)0.22671 (14)0.75206 (19)0.0415 (6)
C190.8210 (3)0.28739 (14)0.81221 (18)0.0402 (6)
C200.8879 (3)0.35225 (16)0.8336 (2)0.0531 (7)
H20A0.97280.35920.81230.064*
C210.8265 (3)0.40656 (17)0.8872 (2)0.0611 (8)
H21A0.87020.45030.90250.073*
C220.7019 (3)0.39554 (15)0.9173 (2)0.0546 (8)
H22A0.65870.43190.95200.066*
C230.6409 (3)0.32963 (14)0.8954 (2)0.0480 (7)
H23A0.55610.32200.91660.058*
Cl0.25347 (7)0.09143 (4)0.40216 (5)0.05096 (19)
O30.2755 (3)0.16261 (12)0.4419 (2)0.0957 (9)
O40.2085 (3)0.09639 (16)0.30025 (18)0.0956 (9)
O50.1576 (3)0.05517 (15)0.4574 (2)0.0958 (8)
O60.3729 (2)0.05090 (16)0.4085 (2)0.0970 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0450 (2)0.03477 (19)0.04338 (19)−0.00436 (14)0.00530 (14)−0.00633 (13)
O10.0719 (14)0.0383 (11)0.0488 (11)−0.0068 (9)−0.0037 (10)−0.0082 (8)
O20.157 (3)0.0660 (17)0.0788 (17)0.0307 (17)−0.0360 (18)0.0011 (13)
N10.0480 (14)0.0429 (13)0.0461 (12)−0.0095 (11)0.0028 (10)−0.0070 (11)
N20.0570 (15)0.0454 (14)0.0554 (14)0.0058 (12)−0.0036 (12)−0.0100 (11)
N30.0431 (13)0.0430 (14)0.0552 (14)0.0014 (10)0.0088 (11)−0.0067 (10)
N40.0466 (13)0.0356 (12)0.0416 (12)−0.0007 (10)0.0033 (10)−0.0018 (9)
C10.0533 (17)0.0415 (16)0.0424 (14)−0.0072 (13)0.0103 (12)−0.0023 (12)
C20.071 (2)0.0517 (19)0.0519 (17)−0.0082 (16)−0.0031 (15)−0.0078 (14)
C30.082 (2)0.070 (2)0.0515 (18)−0.0007 (19)−0.0059 (17)−0.0052 (16)
C40.089 (3)0.057 (2)0.0532 (18)0.0107 (18)0.0023 (18)−0.0003 (15)
C50.080 (2)0.0413 (17)0.0515 (17)−0.0015 (15)0.0065 (16)−0.0040 (13)
C60.0526 (16)0.0415 (15)0.0383 (14)−0.0049 (13)0.0089 (12)−0.0015 (11)
C70.0517 (16)0.0389 (15)0.0451 (15)−0.0108 (13)0.0191 (13)−0.0092 (12)
C80.074 (2)0.0480 (18)0.0608 (19)−0.0214 (16)0.0146 (17)−0.0062 (15)
C90.061 (2)0.060 (2)0.066 (2)−0.0155 (16)−0.0089 (16)−0.0077 (16)
C100.070 (2)0.0530 (19)0.0569 (18)0.0031 (16)−0.0116 (16)−0.0116 (14)
C110.063 (2)0.103 (3)0.103 (3)0.028 (2)−0.010 (2)−0.035 (2)
C120.099 (3)0.055 (2)0.063 (2)0.0052 (19)−0.0126 (19)0.0072 (16)
C130.149 (4)0.068 (3)0.092 (3)0.037 (3)−0.011 (3)0.005 (2)
C140.0549 (18)0.0486 (18)0.070 (2)0.0049 (14)0.0082 (15)−0.0145 (15)
C150.060 (2)0.066 (2)0.063 (2)0.0147 (17)0.0092 (16)−0.0190 (16)
C160.0503 (19)0.091 (3)0.067 (2)0.0089 (18)0.0195 (16)−0.0087 (18)
C170.0470 (17)0.059 (2)0.0658 (19)−0.0041 (14)0.0093 (15)0.0006 (15)
C180.0399 (14)0.0445 (15)0.0398 (14)0.0019 (12)−0.0011 (11)0.0024 (11)
C190.0429 (15)0.0402 (15)0.0371 (13)−0.0018 (12)−0.0026 (11)0.0038 (11)
C200.0515 (18)0.0513 (18)0.0566 (17)−0.0134 (14)0.0023 (14)−0.0014 (14)
C210.076 (2)0.0430 (17)0.0639 (19)−0.0151 (16)−0.0035 (17)−0.0052 (14)
C220.077 (2)0.0381 (16)0.0488 (17)0.0009 (15)0.0025 (15)−0.0054 (12)
C230.0541 (17)0.0423 (16)0.0480 (16)0.0021 (13)0.0060 (13)−0.0046 (12)
Cl0.0475 (4)0.0508 (4)0.0552 (4)0.0010 (3)0.0103 (3)0.0000 (3)
O30.138 (3)0.0527 (15)0.097 (2)−0.0073 (15)0.0050 (18)−0.0065 (13)
O40.0810 (17)0.146 (3)0.0593 (15)0.0118 (17)−0.0038 (13)−0.0072 (15)
O50.0868 (18)0.0864 (19)0.118 (2)−0.0077 (15)0.0486 (16)0.0223 (15)
O60.0599 (15)0.113 (2)0.118 (2)0.0323 (15)0.0115 (14)0.0019 (17)

Geometric parameters (Å, °)

Cu—O11.9037 (19)C9—H9B0.9700
Cu—N11.963 (2)C10—H10A0.9700
Cu—N42.043 (2)C10—H10B0.9700
Cu—N22.077 (2)C11—H11A0.9600
Cu—N32.207 (2)C11—H11B0.9600
O1—C11.313 (3)C11—H11C0.9600
O2—C41.393 (4)C12—H12A0.9600
O2—C131.400 (4)C12—H12B0.9600
N1—C71.298 (3)C12—H12C0.9600
N1—C91.466 (3)C13—H13A0.9600
N2—C111.462 (4)C13—H13B0.9600
N2—C101.482 (4)C13—H13C0.9600
N2—C121.490 (4)C14—C151.369 (4)
N3—C141.343 (3)C14—H14A0.9300
N3—C181.346 (3)C15—C161.372 (4)
N4—C191.348 (3)C15—H15A0.9300
N4—C231.347 (3)C16—C171.383 (4)
C1—C21.407 (4)C16—H16A0.9300
C1—C61.423 (4)C17—C181.375 (4)
C2—C31.373 (4)C17—H17A0.9300
C2—H2A0.9300C18—C191.501 (4)
C3—C41.389 (4)C19—C201.386 (4)
C3—H3A0.9300C20—C211.387 (4)
C4—C51.355 (4)C20—H20A0.9300
C5—C61.416 (4)C21—C221.360 (4)
C5—H5A0.9300C21—H21A0.9300
C6—C71.465 (4)C22—C231.376 (4)
C7—C81.512 (4)C22—H22A0.9300
C8—H8A0.9600C23—H23A0.9300
C8—H8B0.9600Cl—O51.413 (2)
C8—H8C0.9600Cl—O31.416 (2)
C9—C101.512 (4)Cl—O61.419 (2)
C9—H9A0.9700Cl—O41.421 (2)
O1—Cu—N191.73 (9)N2—C10—C9111.1 (3)
O1—Cu—N488.40 (8)N2—C10—H10A109.4
N1—Cu—N4179.21 (9)C9—C10—H10A109.4
O1—Cu—N2159.65 (9)N2—C10—H10B109.4
N1—Cu—N285.30 (9)C9—C10—H10B109.4
N4—Cu—N294.31 (9)H10A—C10—H10B108.0
O1—Cu—N3101.58 (9)N2—C11—H11A109.5
N1—Cu—N3103.01 (9)N2—C11—H11B109.5
N4—Cu—N377.72 (8)H11A—C11—H11B109.5
N2—Cu—N398.71 (9)N2—C11—H11C109.5
C1—O1—Cu121.01 (16)H11A—C11—H11C109.5
C4—O2—C13117.4 (3)H11B—C11—H11C109.5
C7—N1—C9121.2 (2)N2—C12—H12A109.5
C7—N1—Cu125.99 (18)N2—C12—H12B109.5
C9—N1—Cu112.81 (18)H12A—C12—H12B109.5
C11—N2—C10111.8 (3)N2—C12—H12C109.5
C11—N2—C12108.1 (3)H12A—C12—H12C109.5
C10—N2—C12108.5 (2)H12B—C12—H12C109.5
C11—N2—Cu109.6 (2)O2—C13—H13A109.5
C10—N2—Cu103.51 (18)O2—C13—H13B109.5
C12—N2—Cu115.31 (19)H13A—C13—H13B109.5
C14—N3—C18118.4 (2)O2—C13—H13C109.5
C14—N3—Cu128.5 (2)H13A—C13—H13C109.5
C18—N3—Cu112.95 (17)H13B—C13—H13C109.5
C19—N4—C23118.5 (2)N3—C14—C15122.8 (3)
C19—N4—Cu117.37 (17)N3—C14—H14A118.6
C23—N4—Cu123.61 (19)C15—C14—H14A118.6
O1—C1—C2118.0 (2)C14—C15—C16118.6 (3)
O1—C1—C6125.1 (3)C14—C15—H15A120.7
C2—C1—C6116.9 (3)C16—C15—H15A120.7
C3—C2—C1122.9 (3)C15—C16—C17119.3 (3)
C3—C2—H2A118.5C15—C16—H16A120.3
C1—C2—H2A118.5C17—C16—H16A120.3
C2—C3—C4119.6 (3)C18—C17—C16119.1 (3)
C2—C3—H3A120.2C18—C17—H17A120.4
C4—C3—H3A120.2C16—C17—H17A120.4
C5—C4—C3119.6 (3)N3—C18—C17121.7 (2)
C5—C4—O2125.0 (3)N3—C18—C19114.9 (2)
C3—C4—O2115.4 (3)C17—C18—C19123.4 (3)
C4—C5—C6122.4 (3)N4—C19—C20121.2 (2)
C4—C5—H5A118.8N4—C19—C18116.2 (2)
C6—C5—H5A118.8C20—C19—C18122.6 (2)
C5—C6—C1118.5 (3)C21—C20—C19119.1 (3)
C5—C6—C7119.1 (2)C21—C20—H20A120.4
C1—C6—C7122.3 (2)C19—C20—H20A120.4
N1—C7—C6121.2 (2)C22—C21—C20119.6 (3)
N1—C7—C8120.5 (3)C22—C21—H21A120.2
C6—C7—C8118.3 (3)C20—C21—H21A120.2
C7—C8—H8A109.5C21—C22—C23118.8 (3)
C7—C8—H8B109.5C21—C22—H22A120.6
H8A—C8—H8B109.5C23—C22—H22A120.6
C7—C8—H8C109.5N4—C23—C22122.8 (3)
H8A—C8—H8C109.5N4—C23—H23A118.6
H8B—C8—H8C109.5C22—C23—H23A118.6
N1—C9—C10108.0 (2)O5—Cl—O3109.42 (18)
N1—C9—H9A110.1O5—Cl—O6109.47 (17)
C10—C9—H9A110.1O3—Cl—O6109.50 (18)
N1—C9—H9B110.1O5—Cl—O4109.41 (17)
C10—C9—H9B110.1O3—Cl—O4109.93 (18)
H9A—C9—H9B108.4O6—Cl—O4109.10 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2135).

References

  • Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Darensbourg, D. J., Rainey, P. & Yarbrough, J. C. (2001). Inorg. Chem.40, 986–993.
  • Dhar, S., Nethaji, M. & Chakravarty, A. R. (2006). Inorg. Chem.45, 11043–11050. [PubMed]
  • Hung, W.-C., Hung, H. & Lin, C.-C. (2008). J. Polym. Sci. Part A Polym. Chem.46, 6466–6476.
  • Hung, W.-C. & Lin, C.-C. (2009). Inorg. Chem.48, 728–734. [PubMed]
  • Inoue, S., Koinuma, H. & Tsuruta, T. (1969). Makromol. Chem.130, 210–220.
  • Noh, E. K., Na, S. J. S. S., Kim, S.-W. & Lee, B. Y. (2007). J. Am. Chem. Soc.129, 8082–8083. [PubMed]
  • Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem.68, 1559–1562. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography