PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m574.
Published online 2009 April 25. doi:  10.1107/S1600536809011593
PMCID: PMC2977616

Poly[diaqua­(μ3-succinato)cadmium(II)]

Abstract

The title compound, [Cd(C4H4O4)(H2O)2]n, has been synthesized under hydro­thermal conditions. The asymmetric unit consists of one Cd2+ cation, one succinate anion and two aqua ligands. The Cd atoms present a distorted penta­gonal bipyramidal coordination and are bridged into layers parallel to (201) by succinate ligands.

Related literature

For different bridging modes in succinato complexes, see: Ng (1998 [triangle]); Rastsvetaeva et al. (1996 [triangle]); Brusau et al. (2000 [triangle]); He et al. (2006 [triangle]); He et al. (2007 [triangle]). For geometrical comparisons with related compounds, see Huo et al. (2005 [triangle]); Zhuo et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m574-scheme1.jpg

Experimental

Crystal data

  • [Cd(C4H4O4)(H2O)2]
  • M r = 264.51
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m574-efi3.jpg
  • a = 7.7130 (15) Å
  • b = 12.231 (2) Å
  • c = 8.0560 (16) Å
  • β = 94.71 (3)°
  • V = 757.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.87 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.35, T max = 0.55
  • 6371 measured reflections
  • 1409 independent reflections
  • 1335 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.053
  • S = 1.05
  • 1409 reflections
  • 116 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011593/bg2243sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011593/bg2243Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The succinate dianion has been used as a bridging ligand in the preparation of multinuclear metal complexes. A variety of bridging modes have been found (Ng,1998; Rastsvetaeva et al., 1996; Brusau et al., 2000; He et al., 2006; He et al., 2007). We report herein the synthesis and crystal stucture of a new succinate complex [Cd(C4H4O4)(H2O)2] (I).

The asymmetric unit consists of one Cd2+ cation, one succinate anion and two aqua ligands (Fig. 1). The Cd atom is coordinated by seven O atoms of three succinate anions and two aqua ligand, forming a distorted pentagonal bipyramidal coordination geometry (Table 1), with Cd—O bond lengths which agree well with those observed in analogous complexes (Huo et al., 2005; Zhuo et al., 2006). Cd atoms are bridged by succinate ligands into a two-dimensional layer (Fig. 2).

Experimental

Cd(NO3)2.4H2O (0.5 mmol, 0.154 g), succinic acid (0.5 mmol, 0.059 g), sodium hydroxide (1 mmol, 0.04 g) and water (12 ml) were placed in a 23-ml Teflon-lined Parr bomb. The bomb was heated at 453 K for 3 d. The colourless block-shapped crystals were filtered off and washed with water and acetone (yield 45%, based on Cd).

Refinement

Water H atoms were located in a difference Fourier map and refined with restrained O-H (0.85 (1)Å) and free Uiso(H). H atoms on C atom were positoned geometrically and refined using a riding model, with C—H = 0.97 Å.

Figures

Fig. 1.
A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids. Atoms with the suffix A and B are generated by the symmetry operations x + 1, -y + 3/2, z + 1/2 and -x + 2, -y + 1, -z + 2, respectively.
Fig. 2.
The 2-D layer structure of compound (I) (H atoms of methylenes are omitted for clarity).

Crystal data

[Cd(C4H4O4)(H2O)2]F(000) = 512.0
Mr = 264.51Dx = 2.32 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2567 reflections
a = 7.7130 (15) Åθ = 2.6–25.5°
b = 12.231 (2) ŵ = 2.87 mm1
c = 8.0560 (16) ÅT = 293 K
β = 94.71 (3)°Block, colorless
V = 757.4 (2) Å30.40 × 0.30 × 0.21 mm
Z = 4

Data collection

Bruker SMART CD area-detector diffractometer1409 independent reflections
Radiation source: fine-focus sealed tube1335 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −9→9
Tmin = 0.35, Tmax = 0.55k = −14→14
6371 measured reflectionsl = −9→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: constr
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0207P)2 + 1.5P] where P = (Fo2 + 2Fc2)/3
1409 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.40 e Å3
6 restraintsΔρmin = −0.68 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.17614 (3)0.587427 (19)0.08353 (3)0.02570 (10)
C10.4820 (4)0.6353 (3)0.2526 (4)0.0274 (7)
C20.6501 (5)0.6626 (3)0.3501 (6)0.0454 (10)
H2A0.64710.63270.46130.055*
H2B0.74360.62620.29830.055*
C30.6922 (4)0.7799 (3)0.3648 (5)0.0349 (9)
H3A0.60460.81500.42620.042*
H3B0.68400.81130.25380.042*
C40.8675 (4)0.8072 (3)0.4482 (4)0.0252 (7)
O10.4603 (3)0.5387 (2)0.2005 (3)0.0367 (6)
O20.3664 (3)0.70570 (19)0.2216 (3)0.0352 (6)
O30.9815 (3)0.7385 (2)0.4838 (3)0.0399 (6)
O40.8946 (3)0.90780 (18)0.4832 (3)0.0307 (6)
O50.0710 (4)0.5424 (2)0.3376 (3)0.0402 (6)
H5A−0.012 (5)0.499 (3)0.325 (6)0.072 (18)*
H5B0.047 (5)0.598 (2)0.392 (5)0.056 (15)*
O60.2576 (3)0.5909 (2)−0.1850 (3)0.0332 (6)
H6A0.348 (4)0.553 (3)−0.197 (5)0.044 (12)*
H6B0.278 (5)0.6562 (17)−0.213 (5)0.051 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.01635 (14)0.02632 (15)0.03318 (16)−0.00248 (9)−0.00550 (10)−0.00305 (10)
C10.0181 (16)0.0294 (18)0.0342 (18)−0.0041 (14)−0.0016 (14)−0.0046 (15)
C20.032 (2)0.034 (2)0.065 (3)−0.0035 (17)−0.0250 (19)0.0000 (19)
C30.0231 (18)0.0299 (19)0.049 (2)−0.0034 (15)−0.0132 (16)−0.0034 (16)
C40.0213 (16)0.0263 (18)0.0278 (18)−0.0025 (14)−0.0003 (13)−0.0029 (14)
O10.0220 (12)0.0292 (14)0.0572 (17)0.0006 (10)−0.0056 (11)−0.0134 (12)
O20.0245 (13)0.0274 (13)0.0512 (16)0.0008 (10)−0.0117 (11)−0.0102 (11)
O30.0264 (13)0.0286 (13)0.0619 (18)0.0039 (11)−0.0132 (12)−0.0085 (12)
O40.0229 (12)0.0228 (12)0.0448 (15)−0.0029 (9)−0.0078 (11)−0.0017 (10)
O50.0414 (16)0.0419 (17)0.0377 (16)0.0015 (14)0.0054 (12)−0.0026 (13)
O60.0306 (14)0.0266 (14)0.0432 (15)0.0036 (11)0.0070 (11)0.0052 (11)

Geometric parameters (Å, °)

Cd1—O4i2.255 (2)C2—H2A0.9700
Cd1—O22.284 (2)C2—H2B0.9700
Cd1—O62.302 (3)C3—C41.498 (4)
Cd1—O4ii2.316 (2)C3—H3A0.9700
Cd1—O52.329 (3)C3—H3B0.9700
Cd1—O12.389 (2)C4—O31.233 (4)
Cd1—O3i2.690 (2)C4—O41.275 (4)
C1—O21.250 (4)O5—H5B0.84 (3)
C1—O11.260 (4)O5—H5A0.84 (3)
C1—C21.498 (5)O6—H6A0.85 (3)
C2—C31.474 (5)O6—H6B0.85 (3)
O4i—Cd1—O2136.02 (8)C1—C2—H2B108.3
O4i—Cd1—O689.54 (10)H2A—C2—H2B107.4
O2—Cd1—O6103.41 (10)C2—C3—C4116.0 (3)
O4i—Cd1—O4ii74.92 (9)C2—C3—H3A108.3
O2—Cd1—O4ii147.52 (8)C4—C3—H3A108.3
O6—Cd1—O4ii82.91 (9)C2—C3—H3B108.3
O4i—Cd1—O585.77 (10)C4—C3—H3B108.3
O2—Cd1—O588.74 (10)H3A—C3—H3B107.4
O6—Cd1—O5166.39 (10)O3—C4—O4120.4 (3)
O4ii—Cd1—O583.54 (10)O3—C4—C3123.5 (3)
O4i—Cd1—O1166.71 (8)O4—C4—C3116.1 (3)
O2—Cd1—O155.52 (8)C1—O1—Cd189.42 (19)
O6—Cd1—O193.60 (10)C1—O2—Cd194.6 (2)
O4ii—Cd1—O192.64 (8)C4—O4—Cd1iii103.8 (2)
O5—Cd1—O188.23 (10)C4—O4—Cd1iv146.3 (2)
O2—C1—O1120.4 (3)Cd1iii—O4—Cd1iv105.08 (9)
O2—C1—C2121.6 (3)Cd1—O5—H5B112 (3)
O1—C1—C2118.0 (3)Cd1—O5—H5A111 (3)
C3—C2—C1115.8 (3)H5B—O5—H5A112 (3)
C3—C2—H2A108.3Cd1—O6—H6A113 (3)
C1—C2—H2A108.3Cd1—O6—H6B110 (3)
C3—C2—H2B108.3H6A—O6—H6B108 (3)
O2—C1—C2—C3−16.9 (6)O1—C1—O2—Cd12.1 (4)
O1—C1—C2—C3162.3 (4)C2—C1—O2—Cd1−178.7 (3)
C1—C2—C3—C4−174.5 (3)O4i—Cd1—O2—C1170.1 (2)
C2—C3—C4—O39.5 (6)O6—Cd1—O2—C1−86.3 (2)
C2—C3—C4—O4−170.0 (4)O4ii—Cd1—O2—C111.7 (3)
O2—C1—O1—Cd1−2.0 (3)O5—Cd1—O2—C187.5 (2)
C2—C1—O1—Cd1178.7 (3)O1—Cd1—O2—C1−1.2 (2)
O4i—Cd1—O1—C1−151.7 (4)O3—C4—O4—Cd1iii5.3 (4)
O2—Cd1—O1—C11.2 (2)C3—C4—O4—Cd1iii−175.2 (3)
O6—Cd1—O1—C1105.0 (2)O3—C4—O4—Cd1iv153.9 (3)
O4ii—Cd1—O1—C1−172.0 (2)C3—C4—O4—Cd1iv−26.5 (6)
O5—Cd1—O1—C1−88.5 (2)

Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1, −y+3/2, z+1/2; (iv) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2243).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Brusau, E. V., Pedregosa, J. C. G., Narda, E., Echeverria, G. & Punte, G. (2000). J. Solid State Chem.153, 1–8.
  • He, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.
  • He, Q., Zi, J.-F. & Zhang, F.-J. (2006). Acta Cryst. E62, m1266–m1267.
  • Huo, L.-H., Gao, S. & Ng, S. W. (2005). Acta Cryst. E61, m2357–m2358.
  • Ng, S. W. (1998). Acta Cryst. C54, 745–750.
  • Rastsvetaeva, R. K., Pushcharovsky, D. Yu., Furmanova, N. G. & Sharp, H. (1996). Z. Kristallogr.211, 808–810.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhuo, X., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006). Chin. J. Inorg. Chem.22, 1847–1851.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography