PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m572–m573.
Published online 2009 April 25. doi:  10.1107/S1600536809014354
PMCID: PMC2977615

[2,6-Bis(4,5-dihydro-1H-imidazol-2-yl)pyridine]dichloridomanganese(II)

Abstract

In the title compound, [MnCl2(C11H13N5)], the MnII ion is five-coordinated in a distorted square-pyramidal geometry, with three N atoms from the neutral tridentate 2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)pyridine ligand and one chloride ion forming the basal plane and the other chloride ion in the apical position. Both dihydro­imidazole rings adopt envelope conformations. In the crystal structure, mol­ecules are linked into a three-dimensional network by N—H(...)Cl and C—H(...)Cl hydrogen bonds.

Related literature

For the synthesis of 2,6-bis­(4,5-dihydro-1H-imidazol-2-yl)­pyridine, see: Baker et al. (1991 [triangle]). For general background, see: Bordo et al. (2001 [triangle]); Hagrman et al. (1999 [triangle]); Yaghi et al. (1998 [triangle]). For related structures, see: Böca et al. (2005 [triangle]); Haga et al. (1996 [triangle]); Hammes et al. (2005 [triangle]); Ren, Ye, He et al. (2004 [triangle]); Ren, Ye, Zhu et al. (2004 [triangle]); Ren et al. (2007 [triangle]); Stupka et al. (2004 [triangle]); Sun et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m572-scheme1.jpg

Experimental

Crystal data

  • [MnCl2(C11H13N5)]
  • M r = 341.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m572-efi1.jpg
  • a = 9.297 (5) Å
  • b = 12.686 (7) Å
  • c = 12.383 (6) Å
  • β = 100.313 (9)°
  • V = 1436.9 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.28 mm−1
  • T = 273 K
  • 0.30 × 0.25 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS, Bruker, 1998 [triangle]) T min = 0.700, T max = 0.774
  • 8507 measured reflections
  • 3317 independent reflections
  • 1750 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.187
  • S = 0.95
  • 3317 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014354/ci2778sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014354/ci2778Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was generously supported by the National Natural Science Foundation of China (grant No. 20701016).

supplementary crystallographic information

Comment

The construction supramolecular architectures is currently of great interest owing to their intriguing network topologies and potential functions such as adsorption, ion exchange, shape-selective catalysis, non-linear and magnetic materials (Yaghi et al., 1998; Hagrman et al., 1999). The protonation and deprotonation of an imidazole ligand is believed to play an important role in the mechanism of the coordination chemistry (Bordo et al., 2001). We described previously a number of such metal complexes with imidazole ligands, and concluded that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism (Ren, Ye, He et al., 2004; Ren, Ye, Zhu et al., 2004; Ren et al., 2007; Sun et al., 2008). We report here the crystal structure of the title mononuclear coordination complex, [Mn(bip)Cl2], where bip is 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine.

As shown in Fig. 1, in the title compound the manganese(II) atom is five-coordinated in a distorted square-pyramidal geometry, with three N atoms from the neutral tridentate bip ligand and one Cl- ion (Cl1) forming the basal plane and the other Cl- ion (Cl2) in the apical position. The Mn1 atom deviates from the Cl1-N2-N3-N4 plane by 0.5633 (7) Å towards the Cl2 atom. The Mn—N bond lengths of 2.234 (4), 2.237 (4), 2.244 (4) Å are slightly shorter than those observed in metal-imidazole systems (Stupka et al., 2004; Hammes et al., 2005; Haga et al., 1996; Böca et al., 2005). The N—Mn—N bond angles lie in the range 70.69 (14)–140.86 (14)°.

Adjacent molecules are linked into a three-dimensional network by N—H···Cl and C—H···Cl hydrogen bonds (Table 1).

Experimental

All the reagents and solvents employed were commercially available and used as received without further purification. The ligand 2,6-bis(4,5-dihydro-1H-imidazol-2-yl)pyridine (bip) was synthesized by literature methods (Baker et al., 1991). A solution of MnCl2.4H2O (0.2 mmol, 40 mg) in acetonitrile (10 ml) was added dropwise to a stirred solution of bip (0.4 mmol, 86 mg) in methanol (10 ml) at 333 K. Yellow single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethyl ether into the clear filtrate for 2 d in 60% yield. Main IR bands (KBr, cm-1): 3365m, 3251 s, 1621w, 1596m, 1573 s, 1523m, 1446 s, 1275 s, 1026m, 957w, 822w, 745w, 663w.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N-H = 0.86 Å, C-H = 0.93 or 0.97 Å and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the [Mn(bip)Cl2] complex, showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
Fig. 2.
The crystal packing of [Mn(bip)Cl2] viewed along the a axis. H atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.

Crystal data

[MnCl2(C11H13N5)]F(000) = 692
Mr = 341.10Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1365 reflections
a = 9.297 (5) Åθ = 2.3–23.1°
b = 12.686 (7) ŵ = 1.28 mm1
c = 12.383 (6) ÅT = 273 K
β = 100.313 (9)°Block, yellow
V = 1436.9 (13) Å30.30 × 0.25 × 0.21 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3317 independent reflections
Radiation source: fine-focus sealed tube1750 reflections with I > 2σ(I)
graphiteRint = 0.077
[var phi] and ω scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan (SADABS, Bruker, 1998)h = −10→12
Tmin = 0.700, Tmax = 0.774k = −10→16
8507 measured reflectionsl = −16→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.187w = 1/[σ2(Fo2) + (0.0956P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
3317 reflectionsΔρmax = 0.68 e Å3
173 parametersΔρmin = −0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn11.09096 (8)0.66191 (6)0.31687 (6)0.0431 (3)
Cl11.33924 (15)0.63750 (13)0.29973 (12)0.0605 (5)
Cl20.96929 (17)0.77218 (13)0.17311 (13)0.0697 (5)
N10.9960 (5)0.8515 (3)0.5846 (4)0.0519 (12)
H10.92620.86440.61980.062*
N21.1031 (5)0.7757 (3)0.4559 (3)0.0492 (11)
N30.9235 (4)0.6172 (3)0.4186 (3)0.0360 (9)
N40.9927 (4)0.5062 (3)0.2597 (3)0.0458 (11)
N50.8274 (5)0.3790 (4)0.2646 (4)0.0542 (12)
H5A0.76470.34290.29230.065*
C11.1869 (7)0.8745 (5)0.4878 (5)0.0587 (16)
H1A1.16770.92660.42970.070*
H1B1.29110.86060.50450.070*
C21.1298 (6)0.9119 (5)0.5908 (5)0.0606 (16)
H2A1.19880.89570.65730.073*
H2B1.11030.98700.58810.073*
C31.0010 (5)0.7721 (4)0.5141 (4)0.0413 (12)
C40.8964 (5)0.6824 (4)0.4970 (4)0.0359 (11)
C50.7820 (5)0.6653 (4)0.5540 (4)0.0432 (12)
H50.76260.71260.60690.052*
C60.6986 (6)0.5756 (4)0.5292 (4)0.0510 (14)
H60.62220.56130.56620.061*
C70.7285 (5)0.5069 (4)0.4493 (4)0.0474 (13)
H70.67370.44590.43250.057*
C80.8416 (5)0.5311 (4)0.3951 (4)0.0387 (11)
C90.8875 (5)0.4711 (4)0.3049 (4)0.0388 (11)
C100.8854 (7)0.3506 (5)0.1671 (5)0.0618 (17)
H10A0.81370.36150.10080.074*
H10B0.91860.27810.17000.074*
C111.0136 (6)0.4282 (5)0.1743 (5)0.0595 (16)
H11A1.10620.39180.19500.071*
H11B1.01230.46290.10430.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0457 (5)0.0447 (5)0.0447 (5)−0.0006 (4)0.0233 (4)0.0035 (4)
Cl10.0490 (8)0.0707 (10)0.0689 (9)0.0051 (7)0.0298 (7)0.0207 (8)
Cl20.0638 (10)0.0713 (11)0.0796 (11)0.0170 (8)0.0280 (8)0.0339 (9)
N10.056 (3)0.046 (3)0.061 (3)−0.016 (2)0.029 (2)−0.013 (2)
N20.050 (3)0.049 (3)0.054 (3)−0.013 (2)0.025 (2)0.000 (2)
N30.041 (2)0.034 (2)0.035 (2)−0.0027 (18)0.0134 (18)0.0013 (19)
N40.052 (3)0.044 (3)0.046 (2)0.003 (2)0.024 (2)−0.002 (2)
N50.065 (3)0.045 (3)0.058 (3)−0.009 (2)0.025 (2)−0.010 (2)
C10.062 (4)0.048 (3)0.071 (4)−0.015 (3)0.027 (3)−0.001 (3)
C20.065 (4)0.054 (4)0.066 (4)−0.014 (3)0.021 (3)−0.011 (3)
C30.042 (3)0.044 (3)0.040 (3)−0.003 (2)0.014 (2)0.002 (2)
C40.043 (3)0.032 (3)0.036 (2)−0.001 (2)0.017 (2)0.004 (2)
C50.049 (3)0.045 (3)0.041 (3)−0.002 (3)0.021 (2)0.001 (2)
C60.054 (3)0.050 (3)0.058 (3)−0.004 (3)0.034 (3)0.004 (3)
C70.043 (3)0.048 (3)0.055 (3)−0.008 (3)0.020 (3)0.000 (3)
C80.039 (3)0.037 (3)0.042 (3)0.003 (2)0.013 (2)0.004 (2)
C90.046 (3)0.032 (3)0.039 (3)0.003 (2)0.009 (2)0.004 (2)
C100.076 (4)0.056 (4)0.056 (3)0.012 (3)0.017 (3)−0.012 (3)
C110.066 (4)0.064 (4)0.054 (3)0.003 (3)0.027 (3)−0.012 (3)

Geometric parameters (Å, °)

Mn1—N22.234 (4)C1—H1A0.97
Mn1—N42.237 (4)C1—H1B0.97
Mn1—N32.244 (4)C2—H2A0.97
Mn1—Cl12.3759 (19)C2—H2B0.97
Mn1—Cl22.3842 (18)C3—C41.486 (7)
N1—C31.340 (7)C4—C51.397 (6)
N1—C21.450 (7)C5—C61.380 (8)
N1—H10.86C5—H50.93
N2—C31.291 (6)C6—C71.382 (7)
N2—C11.489 (7)C6—H60.93
N3—C41.333 (6)C7—C81.380 (6)
N3—C81.333 (6)C7—H70.93
N4—C91.289 (6)C8—C91.476 (7)
N4—C111.487 (7)C10—C111.535 (9)
N5—C91.352 (7)C10—H10A0.97
N5—C101.455 (7)C10—H10B0.97
N5—H5A0.86C11—H11A0.97
C1—C21.542 (8)C11—H11B0.97
N2—Mn1—N4140.86 (14)C1—C2—H2B111.3
N2—Mn1—N371.04 (14)H2A—C2—H2B109.2
N4—Mn1—N370.69 (14)N2—C3—N1116.8 (5)
N2—Mn1—Cl1103.72 (12)N2—C3—C4118.3 (5)
N4—Mn1—Cl1101.82 (11)N1—C3—C4124.8 (4)
N3—Mn1—Cl1143.13 (12)N3—C4—C5122.1 (5)
N2—Mn1—Cl298.52 (13)N3—C4—C3112.1 (4)
N4—Mn1—Cl299.76 (12)C5—C4—C3125.8 (4)
N3—Mn1—Cl2106.47 (12)C6—C5—C4117.7 (5)
Cl1—Mn1—Cl2110.39 (6)C6—C5—H5121.2
C3—N1—C2107.6 (4)C4—C5—H5121.2
C3—N1—H1126.2C5—C6—C7120.1 (5)
C2—N1—H1126.2C5—C6—H6119.9
C3—N2—C1106.5 (4)C7—C6—H6119.9
C3—N2—Mn1117.8 (4)C8—C7—C6118.6 (5)
C1—N2—Mn1134.3 (3)C8—C7—H7120.7
C4—N3—C8119.6 (4)C6—C7—H7120.7
C4—N3—Mn1119.4 (3)N3—C8—C7121.9 (5)
C8—N3—Mn1120.7 (3)N3—C8—C9110.9 (4)
C9—N4—C11106.5 (5)C7—C8—C9127.1 (5)
C9—N4—Mn1117.8 (3)N4—C9—N5115.8 (5)
C11—N4—Mn1135.6 (3)N4—C9—C8119.6 (5)
C9—N5—C10109.2 (5)N5—C9—C8124.5 (4)
C9—N5—H5A125.4N5—C10—C11101.1 (5)
C10—N5—H5A125.4N5—C10—H10A111.6
N2—C1—C2103.7 (4)C11—C10—H10A111.6
N2—C1—H1A111.0N5—C10—H10B111.6
C2—C1—H1A111.0C11—C10—H10B111.6
N2—C1—H1B111.0H10A—C10—H10B109.4
C2—C1—H1B111.0N4—C11—C10105.6 (4)
H1A—C1—H1B109.0N4—C11—H11A110.6
N1—C2—C1102.3 (5)C10—C11—H11A110.6
N1—C2—H2A111.3N4—C11—H11B110.6
C1—C2—H2A111.3C10—C11—H11B110.6
N1—C2—H2B111.3H11A—C11—H11B108.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5A···Cl2i0.862.463.287 (5)161
N1—H1···Cl1ii0.862.503.261 (5)147
C7—H7···Cl2i0.932.783.681 (6)164

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2778).

References

  • Baker, A. T., Singh, P. & Vignevich, V. (1991). Aust. J. Chem.44, 1041–1048.
  • Böca, R., Renz, F., Böca, M., Fuess, H., Haase, W., Kickelbick, G., Linert, W. & Vrbova-Schikora, M. (2005). Inorg. Chem. Commun.8, 227–230.
  • Bordo, D., Forlani, F., Spallarossa, A., Colnaghi, R., Carpen, A., Bolognesi, M. & Pagani, S. (2001). Biol. Chem.382, 1245–1252. [PubMed]
  • Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Haga, M., Ali, M. M. & Arakawa, R. (1996). Angew. Chem. Int. Ed. Engl.35, 76–78.
  • Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed.38, 2638–2684. [PubMed]
  • Hammes, B. S., Damiano, B. J., Tobash, P. H., Hidalog, M. J. & Yap, G. P. A. (2005). Inorg. Chem. Commun.8, 513–516.
  • Ren, C.-X., Cheng, L., Ye, B.-H. & Chen, X.-M. (2007). Inorg. Chim. Acta, 360, 3741–3747.
  • Ren, C.-X., Ye, B.-H., He, F., Cheng, L. & Chen, X.-M. (2004). CrystEngComm, 6, 200–206.
  • Ren, C.-X., Ye, B.-H., Zhu, H.-L., Shi, J.-X. & Chen, X.-M. (2004). Inorg. Chim. Acta, 357, 443–450.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stupka, G., Gremaud, L., Bernardinelli, G. & Williams, A. F. (2004). J. Chem. Soc. Dalton Trans. pp. 407–412. [PubMed]
  • Sun, H., Ren, C.-X., Shen, B., Liu, Z.-Q. & Ding, Y.-Q. (2008). Acta Cryst. E64, m427–m428. [PMC free article] [PubMed]
  • Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography