PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m570–m571.
Published online 2009 April 25. doi:  10.1107/S1600536809014500
PMCID: PMC2977614

{6,6′-Dimeth­oxy-2,2′-[2,2-dimethyl­propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II) 1.78-hydrate

Abstract

In the title complex, [Ni(C21H24N2O4)]·1.78H2O, the NiII ion has a slightly distorted planar geometry, coordinated by the two N and two O atoms of the tetra­dentate Schiff base ligand, with a mean deviation of 0.272 Å from the NiN2O2 plane. The N and O donor atoms are mutually cis. The dihedral angle between two benzene rings of the ligand is 38.86 (8)°. There are also three solvent water mol­ecules, two of which lie across different crystallographic twofold rotation axes; one of these is partially occupied with a refined occupancy factor of 0.570 (7). The water mol­ecules are linked together as tetra­mers in R 2 2(8) ring motifs, which also connect two neighbouring mol­ecules of the complex through a network of O—H(...)O hydrogen bonds. The crystal structure is further stabilized by inter­molecular C—H(...)O and C—H(...)π inter­actions, which link neighbouring mol­ecules into extended chains along the b axis. Other inter­esting features of the crystal structure are the short inter­molecular C(...)C [3.204 (3)–3.365 (3) Å] and the C(...)O [3.199 (2)–3.205 (2) Å] contacts which are shorter than the sum of the van der Waals radii of these atoms.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Clark et al. (1968 [triangle], 1969 [triangle], 1970 [triangle]). For applications and bioactivity of Schiff base complexes, see: Elmali et al. (2000 [triangle]); Blower (1998 [triangle]); Granovski et al. (1993 [triangle]); Li & Chang (1991 [triangle]); Shahrokhian et al. (2000 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m570-scheme1.jpg

Experimental

Crystal data

  • [Ni(C21H24N2O4)]·1.78H2O
  • M r = 459.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m570-efi1.jpg
  • a = 23.2513 (6) Å
  • b = 9.2709 (2) Å
  • c = 20.8024 (5) Å
  • β = 111.291 (1)°
  • V = 4178.12 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 100 K
  • 0.48 × 0.06 × 0.04 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.655, T max = 0.959
  • 19991 measured reflections
  • 6519 independent reflections
  • 4609 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.098
  • S = 1.06
  • 6519 reflections
  • 275 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014500/sj2621sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014500/sj2621Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF, RK and CSY thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and nickel(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (Fig. 1), the NiII ion shows a slightly distorted planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the related structures (Clark et al., 1968, 1969, 1970). The dihedral angle between two benzene rings is 38.84 (9)°.

Of the three solvent water molecules, two of them lie across different crystallographic twofold rotation axes and one of them is partially occupied with a refined occupancy factor of 0.570 (7). The water molecules are linked together as tetramers in R22(8) ring motifs which also connect two neighbouring molecules of the complex. The crystal structure is further stabilized by intermolecular C—H···O and C—H···π interactions (Table 1) which link neighbouring molecules into 1-dimensional extended chains along the b-axis (Fig. 2). Other interesting features of the crystal structure are the short intermolecular C1···C8iii [3.204 (3) Å], C1···C11ii [3.364 (3) Å], C2···C8iii [3.365 (3)], C7···O1iii [3.199 (2) Å], and C11···O1ii [3.205 (2) Å] contacts (symmetry operations as in Table 1) which are shorter than the sum of the van der Waals radii of these atoms.

Experimental

A chloroform solution (40 ml) of N,N'-ethylene-bis-(3-methoxy-2- hydroxysalicylaldimine) (1 mmol) was added to a methanol solution (20 ml) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air, deep-green needle-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

The water H-atoms were located from the difference Fourier map and constrained to refine with the parent atom with the Uiso(H) = 1.5 Ueq(O). The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding approximation model. A rotating-group model was used for the methyl groups of the methoxy substituents.

Figures

Fig. 1.
The assymetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are drawn as dashed lines.
Fig. 2.
The crystal packing of the title compound viewed down the b-axis, showing 1-dimensional extended chains along the b-axis. Intermolecular interactions are drawn as dashed lines.

Crystal data

[Ni(C21H24N2O4)]·1.78H2OF(000) = 1935
Mr = 459.29Dx = 1.460 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5799 reflections
a = 23.2513 (6) Åθ = 2.4–30.9°
b = 9.2709 (2) ŵ = 0.97 mm1
c = 20.8024 (5) ÅT = 100 K
β = 111.291 (1)°Needle, green
V = 4178.12 (17) Å30.48 × 0.06 × 0.04 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6519 independent reflections
Radiation source: fine-focus sealed tube4609 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 30.9°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −33→30
Tmin = 0.655, Tmax = 0.959k = −13→13
19991 measured reflectionsl = −30→30

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0393P)2 + 1.0555P] where P = (Fo2 + 2Fc2)/3
6519 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.236534 (10)0.03020 (3)0.016967 (11)0.01197 (8)
O10.20185 (6)−0.04173 (15)−0.07256 (6)0.0141 (3)
O20.15706 (6)0.08978 (16)0.00363 (6)0.0146 (3)
O30.15150 (6)−0.03871 (16)−0.20732 (7)0.0198 (3)
O40.03874 (6)0.13066 (18)−0.03278 (7)0.0263 (4)
N10.30718 (7)−0.08539 (19)0.04015 (7)0.0126 (3)
N20.27481 (7)0.15663 (19)0.09066 (7)0.0131 (3)
C10.23268 (8)−0.1077 (2)−0.10589 (9)0.0128 (4)
C20.20584 (8)−0.1127 (2)−0.17960 (9)0.0143 (4)
C30.23389 (9)−0.1867 (2)−0.21739 (10)0.0184 (4)
H3A0.2162−0.1864−0.26530.022*
C40.28894 (9)−0.2625 (3)−0.18454 (10)0.0215 (5)
H4A0.3070−0.3147−0.21040.026*
C50.31593 (9)−0.2592 (2)−0.11392 (10)0.0191 (5)
H5A0.3520−0.3111−0.09200.023*
C60.28970 (8)−0.1783 (2)−0.07416 (9)0.0139 (4)
C70.32108 (8)−0.1720 (2)−0.00063 (9)0.0149 (4)
H7A0.3539−0.23510.01910.018*
C80.34214 (8)−0.0980 (2)0.11514 (9)0.0143 (4)
H8A0.3701−0.17940.12350.017*
H8B0.3135−0.11690.13840.017*
C90.37932 (8)0.0387 (2)0.14565 (9)0.0145 (4)
C100.34240 (8)0.1725 (2)0.11110 (9)0.0151 (4)
H10A0.35590.25340.14260.018*
H10B0.35170.19510.07040.018*
C110.24663 (8)0.2501 (2)0.11465 (9)0.0136 (4)
H11A0.27130.31240.14840.016*
C120.18108 (8)0.2677 (2)0.09453 (9)0.0137 (4)
C130.15822 (9)0.3744 (2)0.12736 (9)0.0165 (4)
H13A0.18570.42900.16270.020*
C140.09596 (9)0.3987 (2)0.10780 (10)0.0185 (4)
H14A0.08150.46920.12990.022*
C150.05432 (9)0.3170 (2)0.05440 (10)0.0197 (5)
H15A0.01210.33260.04150.024*
C160.07557 (9)0.2138 (2)0.02094 (10)0.0176 (4)
C170.14009 (8)0.1858 (2)0.03968 (9)0.0140 (4)
C180.44051 (8)0.0392 (3)0.13346 (11)0.0207 (5)
H18A0.43230.03970.08480.031*
H18B0.4638−0.04540.15380.031*
H18C0.46370.12370.15420.031*
C190.39200 (9)0.0387 (3)0.22342 (10)0.0212 (5)
H19A0.41490.12350.24400.032*
H19B0.4155−0.04550.24410.032*
H19C0.35350.03790.23070.032*
C200.11522 (10)−0.0671 (3)−0.27807 (10)0.0265 (5)
H20A0.0770−0.0152−0.29080.040*
H20B0.1069−0.1686−0.28430.040*
H20C0.1374−0.0365−0.30660.040*
C21−0.02618 (9)0.1585 (3)−0.05688 (11)0.0341 (6)
H21A−0.04700.0964−0.09520.051*
H21B−0.03380.2573−0.07120.051*
H21C−0.04130.1404−0.02040.051*
O1W0.00000.1551 (3)−0.25000.0449 (7)
H1W1−0.01790.1045−0.28490.067*
O2W0.06628 (7)−0.03162 (18)−0.13412 (8)0.0316 (4)
H1W20.0657−0.0153−0.09370.047*
H2W20.1022−0.0323−0.13710.047*
O3W0.0000−0.2322 (4)−0.25000.0320 (14)0.570 (7)
H1W3−0.0239−0.1811−0.28600.048*0.570 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.01173 (11)0.01265 (14)0.01018 (11)0.00058 (11)0.00237 (8)−0.00026 (11)
O10.0139 (6)0.0158 (8)0.0120 (6)0.0011 (6)0.0038 (5)−0.0010 (6)
O20.0139 (6)0.0159 (8)0.0136 (6)0.0012 (6)0.0046 (5)−0.0023 (6)
O30.0219 (7)0.0210 (9)0.0112 (6)0.0054 (7)−0.0001 (5)−0.0023 (6)
O40.0119 (6)0.0375 (10)0.0256 (7)0.0012 (7)0.0020 (6)−0.0132 (8)
N10.0132 (7)0.0132 (9)0.0104 (7)−0.0018 (7)0.0029 (6)0.0011 (7)
N20.0137 (7)0.0136 (9)0.0105 (7)−0.0004 (7)0.0026 (6)0.0029 (7)
C10.0146 (8)0.0109 (10)0.0133 (8)−0.0031 (8)0.0057 (7)0.0002 (8)
C20.0155 (8)0.0113 (11)0.0150 (8)−0.0020 (8)0.0042 (7)0.0000 (8)
C30.0231 (10)0.0193 (12)0.0135 (9)−0.0021 (9)0.0073 (8)−0.0020 (9)
C40.0229 (10)0.0242 (13)0.0209 (10)−0.0005 (10)0.0123 (8)−0.0073 (10)
C50.0144 (9)0.0224 (13)0.0210 (10)0.0031 (9)0.0070 (8)−0.0004 (10)
C60.0142 (8)0.0127 (10)0.0150 (8)−0.0030 (8)0.0055 (7)−0.0010 (8)
C70.0120 (8)0.0144 (11)0.0173 (9)−0.0009 (8)0.0042 (7)0.0008 (9)
C80.0145 (8)0.0146 (11)0.0116 (8)0.0000 (8)0.0023 (7)0.0028 (8)
C90.0140 (8)0.0145 (11)0.0132 (8)−0.0025 (8)0.0029 (7)0.0002 (8)
C100.0146 (8)0.0150 (11)0.0161 (9)−0.0028 (8)0.0059 (7)0.0012 (9)
C110.0183 (9)0.0116 (11)0.0101 (8)−0.0026 (8)0.0044 (7)0.0020 (8)
C120.0175 (9)0.0120 (11)0.0129 (8)0.0001 (8)0.0071 (7)0.0030 (8)
C130.0226 (9)0.0129 (11)0.0149 (9)−0.0025 (9)0.0078 (7)0.0007 (8)
C140.0240 (10)0.0166 (12)0.0174 (9)0.0038 (9)0.0104 (8)0.0009 (9)
C150.0156 (9)0.0258 (13)0.0188 (9)0.0040 (9)0.0076 (7)0.0013 (10)
C160.0169 (9)0.0205 (12)0.0142 (9)0.0008 (9)0.0043 (7)0.0004 (9)
C170.0164 (8)0.0131 (11)0.0131 (8)0.0020 (8)0.0061 (7)0.0043 (8)
C180.0137 (8)0.0220 (12)0.0249 (10)−0.0019 (9)0.0052 (8)0.0020 (10)
C190.0222 (10)0.0235 (13)0.0149 (9)−0.0025 (10)0.0033 (7)−0.0007 (9)
C200.0263 (11)0.0322 (15)0.0139 (9)0.0054 (11)−0.0012 (8)−0.0034 (10)
C210.0135 (9)0.0545 (18)0.0291 (11)0.0012 (11)0.0016 (8)−0.0149 (13)
O1W0.0409 (14)0.0342 (16)0.0516 (16)0.0000.0072 (12)0.000
O2W0.0210 (7)0.0427 (11)0.0294 (8)−0.0017 (8)0.0073 (6)−0.0150 (8)
O3W0.031 (2)0.023 (3)0.038 (2)0.0000.0070 (18)0.000

Geometric parameters (Å, °)

Ni1—O21.8505 (13)C9—C191.535 (3)
Ni1—O11.8636 (13)C10—H10A0.9700
Ni1—N11.8719 (16)C10—H10B0.9700
Ni1—N21.8776 (16)C11—C121.436 (2)
O1—C11.315 (2)C11—H11A0.9300
O2—C171.313 (2)C12—C131.411 (3)
O3—C21.368 (2)C12—C171.413 (3)
O3—C201.430 (2)C13—C141.373 (3)
O4—C161.372 (2)C13—H13A0.9300
O4—C211.431 (2)C14—C151.402 (3)
N1—C71.292 (2)C14—H14A0.9300
N1—C81.479 (2)C15—C161.376 (3)
N2—C111.291 (2)C15—H15A0.9300
N2—C101.479 (2)C16—C171.430 (2)
C1—C61.409 (3)C18—H18A0.9600
C1—C21.431 (2)C18—H18B0.9600
C2—C31.373 (3)C18—H18C0.9600
C3—C41.402 (3)C19—H19A0.9600
C3—H3A0.9300C19—H19B0.9600
C4—C51.372 (3)C19—H19C0.9600
C4—H4A0.9300C20—H20A0.9600
C5—C61.409 (3)C20—H20B0.9600
C5—H5A0.9300C20—H20C0.9600
C6—C71.437 (2)C21—H21A0.9600
C7—H7A0.9300C21—H21B0.9600
C8—C91.536 (3)C21—H21C0.9600
C8—H8A0.9700O1W—H1W10.8368
C8—H8B0.9700O2W—H1W20.8598
C9—C101.531 (3)O2W—H2W20.8602
C9—C181.533 (3)O3W—H1W30.8900
O2—Ni1—O184.88 (5)C9—C10—H10A108.7
O2—Ni1—N1160.84 (7)N2—C10—H10B108.7
O1—Ni1—N194.21 (6)C9—C10—H10B108.7
O2—Ni1—N295.02 (6)H10A—C10—H10B107.6
O1—Ni1—N2160.77 (7)N2—C11—C12126.70 (18)
N1—Ni1—N292.04 (7)N2—C11—H11A116.7
C1—O1—Ni1124.91 (11)C12—C11—H11A116.7
C17—O2—Ni1127.39 (12)C13—C12—C17120.35 (17)
C2—O3—C20116.80 (15)C13—C12—C11119.01 (18)
C16—O4—C21116.83 (17)C17—C12—C11120.51 (17)
C7—N1—C8118.09 (16)C14—C13—C12120.92 (18)
C7—N1—Ni1126.32 (13)C14—C13—H13A119.5
C8—N1—Ni1114.32 (12)C12—C13—H13A119.5
C11—N2—C10117.23 (16)C13—C14—C15119.78 (19)
C11—N2—Ni1125.31 (13)C13—C14—H14A120.1
C10—N2—Ni1115.85 (12)C15—C14—H14A120.1
O1—C1—C6124.71 (16)C16—C15—C14120.34 (18)
O1—C1—C2118.08 (16)C16—C15—H15A119.8
C6—C1—C2117.18 (17)C14—C15—H15A119.8
O3—C2—C3124.56 (17)O4—C16—C15124.75 (17)
O3—C2—C1114.34 (16)O4—C16—C17113.76 (17)
C3—C2—C1121.10 (18)C15—C16—C17121.48 (18)
C2—C3—C4120.73 (18)O2—C17—C12124.81 (17)
C2—C3—H3A119.6O2—C17—C16118.05 (17)
C4—C3—H3A119.6C12—C17—C16117.11 (18)
C5—C4—C3119.49 (18)C9—C18—H18A109.5
C5—C4—H4A120.3C9—C18—H18B109.5
C3—C4—H4A120.3H18A—C18—H18B109.5
C4—C5—C6120.88 (18)C9—C18—H18C109.5
C4—C5—H5A119.6H18A—C18—H18C109.5
C6—C5—H5A119.6H18B—C18—H18C109.5
C5—C6—C1120.43 (17)C9—C19—H19A109.5
C5—C6—C7119.07 (17)C9—C19—H19B109.5
C1—C6—C7120.48 (17)H19A—C19—H19B109.5
N1—C7—C6124.96 (18)C9—C19—H19C109.5
N1—C7—H7A117.5H19A—C19—H19C109.5
C6—C7—H7A117.5H19B—C19—H19C109.5
N1—C8—C9112.44 (16)O3—C20—H20A109.5
N1—C8—H8A109.1O3—C20—H20B109.5
C9—C8—H8A109.1H20A—C20—H20B109.5
N1—C8—H8B109.1O3—C20—H20C109.5
C9—C8—H8B109.1H20A—C20—H20C109.5
H8A—C8—H8B107.8H20B—C20—H20C109.5
C10—C9—C18108.41 (16)O4—C21—H21A109.5
C10—C9—C19110.81 (16)O4—C21—H21B109.5
C18—C9—C19109.85 (15)H21A—C21—H21B109.5
C10—C9—C8109.82 (15)O4—C21—H21C109.5
C18—C9—C8110.55 (17)H21A—C21—H21C109.5
C19—C9—C8107.40 (16)H21B—C21—H21C109.5
N2—C10—C9114.23 (16)H1W2—O2W—H2W2115.6
N2—C10—H10A108.7
O2—Ni1—O1—C1179.08 (15)C8—N1—C7—C6176.88 (17)
N1—Ni1—O1—C1−20.13 (16)Ni1—N1—C7—C610.6 (3)
N2—Ni1—O1—C188.5 (2)C5—C6—C7—N1168.97 (19)
O1—Ni1—O2—C17−162.95 (16)C1—C6—C7—N1−12.7 (3)
N1—Ni1—O2—C17109.0 (2)C7—N1—C8—C9116.78 (19)
N2—Ni1—O2—C17−2.25 (16)Ni1—N1—C8—C9−75.31 (16)
O2—Ni1—N1—C790.5 (2)N1—C8—C9—C1037.6 (2)
O1—Ni1—N1—C73.93 (17)N1—C8—C9—C18−81.95 (19)
N2—Ni1—N1—C7−157.87 (17)N1—C8—C9—C19158.22 (15)
O2—Ni1—N1—C8−76.3 (2)C11—N2—C10—C9123.82 (18)
O1—Ni1—N1—C8−162.81 (13)Ni1—N2—C10—C9−69.85 (17)
N2—Ni1—N1—C835.38 (13)C18—C9—C10—N2153.78 (16)
O2—Ni1—N2—C11−2.15 (16)C19—C9—C10—N2−85.59 (19)
O1—Ni1—N2—C1186.7 (2)C8—C9—C10—N232.9 (2)
N1—Ni1—N2—C11−164.32 (16)C10—N2—C11—C12170.83 (17)
O2—Ni1—N2—C10−167.23 (13)Ni1—N2—C11—C125.9 (3)
O1—Ni1—N2—C10−78.4 (2)N2—C11—C12—C13178.81 (18)
N1—Ni1—N2—C1030.60 (13)N2—C11—C12—C17−5.2 (3)
Ni1—O1—C1—C623.2 (3)C17—C12—C13—C141.4 (3)
Ni1—O1—C1—C2−158.92 (14)C11—C12—C13—C14177.37 (18)
C20—O3—C2—C314.6 (3)C12—C13—C14—C15−0.2 (3)
C20—O3—C2—C1−165.57 (18)C13—C14—C15—C16−0.8 (3)
O1—C1—C2—O33.8 (3)C21—O4—C16—C152.5 (3)
C6—C1—C2—O3−178.18 (17)C21—O4—C16—C17−176.59 (19)
O1—C1—C2—C3−176.36 (18)C14—C15—C16—O4−178.51 (19)
C6—C1—C2—C31.7 (3)C14—C15—C16—C170.6 (3)
O3—C2—C3—C4−178.48 (19)Ni1—O2—C17—C123.2 (3)
C1—C2—C3—C41.6 (3)Ni1—O2—C17—C16−178.97 (13)
C2—C3—C4—C5−1.9 (3)C13—C12—C17—O2176.22 (18)
C3—C4—C5—C6−1.3 (3)C11—C12—C17—O20.3 (3)
C4—C5—C6—C14.7 (3)C13—C12—C17—C16−1.6 (3)
C4—C5—C6—C7−176.9 (2)C11—C12—C17—C16−177.50 (18)
O1—C1—C6—C5173.11 (18)O4—C16—C17—O21.8 (3)
C2—C1—C6—C5−4.8 (3)C15—C16—C17—O2−177.33 (18)
O1—C1—C6—C7−5.2 (3)O4—C16—C17—C12179.80 (17)
C2—C1—C6—C7176.85 (18)C15—C16—C17—C120.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2Wi0.842.082.913 (2)175
O2W—H1W2···O20.862.543.089 (2)123
O2W—H1W2···O40.862.102.846 (2)145
O2W—H2W2···O10.862.222.942 (2)142
O2W—H2W2···O30.862.162.905 (2)145
O3W—H1W3···O2Wi0.892.112.991 (3)169
C10—H10B···O2ii0.972.483.251 (2)136
C8—H8B···Cg1iii0.972.573.370 (2)139
C13—H13A···Cg1ii0.932.753.377 (2)125

Symmetry codes: (i) −x, y, −z−1/2; (ii) −x+1/2, −y+1/2, −z; (iii) −x+1/2, −y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2621).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blower, P. J. (1998). Transition Met. Chem.23, 109–112.
  • Bruker (2005). APEX2 , SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.
  • Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.
  • Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. [PubMed]
  • Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Li, C. H. & Chang, T. C. (1991). Eur. Polym. J.27, 35–39.
  • Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem.72, 956–962. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography