PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m567.
Published online 2009 April 25. doi:  10.1107/S1600536809014482
PMCID: PMC2977612

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2011 March 01; 67(Pt 3): e14    See also: PMC Retraction Policy

Di-μ-chlorido-bis­[chlorido(1,10-phenanthroline-κ2 N,N′)zinc(II)]

Abstract

In the crystal structure of the title complex, [Zn2Cl4(C12H8N2)2], each of the two five-coordinated ZnII atoms displays a strongly distorted trigonal-bipyramidal geometry defined by two N atoms from the chelate ligand and by one terminal and two bridging chloride anions. The crystal structure is stabilized by C—H(...)Cl inter­actions. There is inter­molecular π–π stacking between adjacent phenanthroline ligands, with a centroid–centroid distance of 3.151 (3) Å.

Related literature

For the use of metal complexes of phenanthroline and its derivatives with π-π stacking to study the hydrolysis of biologically important phosphate diesters with poor leaving groups, see: Wall et al. (1999 [triangle]). For the structures of a series of metal complexes, see: Wu et al. (2003 [triangle]); Pan & Xu (2004 [triangle]); Li et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m567-scheme1.jpg

Experimental

Crystal data

  • [Zn2Cl4(C12H8N2)2]
  • M r = 632.95
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m567-efi1.jpg
  • a = 9.8537 (12) Å
  • b = 17.873 (2) Å
  • c = 13.3798 (12) Å
  • β = 106.502 (3)°
  • V = 2259.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.62 mm−1
  • T = 293 K
  • 0.19 × 0.16 × 0.12 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.636, T max = 0.744
  • 7229 measured reflections
  • 4218 independent reflections
  • 3453 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.073
  • S = 1.00
  • 4218 reflections
  • 307 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.43 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1983 [triangle] Friedel pairs
  • Flack parameter: 0.079 (12)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014482/at2764sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014482/at2764Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Youth Program of Jiangxi University of Finance and Economics for financial support of this work.

supplementary crystallographic information

Comment

Simple metal complexes of phenanthroline and its derivatives with π-π stacking have attracted great interest because they can be used to study the hydrolysis of biologically important phosphate diesters with poor leaving groups (Wall et al., 1999). A series of metal complexes incorporating different aromatic ligands such as phenanthroline(phen), benzimidazole and quinoline have been prepared and their crystal structures provide useful information about π-π stacking (Wu et al., 2003; Pan & Xu, 2004; Li et al., 2005). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). In the crystal structure of the title complex, each of the two five-coordinated ZnII atoms displays a strongly distorted trigonalbipyramidal geometry, defined by two N atom from the organic ligand, and by one terminal and two bridging chloride anions (Table 1).

The crystal structure is stabilized by C—H···Cl interactions (Table 1). There is intermolecular π-π stacking between adjacent phenanthrolines, with a centroid-centroid distance of 3.151 (3) Å (symmetry code: -1/2 + x, 1/2 + y, z). These π-π stacking interactions lead to a supramolecular network structure (Fig. 2).

Experimental

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Zinc(II) chloride (136.3 mg, 1 mmol), phen (396 mg, 2 mmol) and distilled water (10 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colourless solution was decanted from small colourless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement

H atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

[Zn2Cl4(C12H8N2)2]F(000) = 1264
Mr = 632.95Dx = 1.861 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3822 reflections
a = 9.8537 (12) Åθ = 2.3–27.3°
b = 17.873 (2) ŵ = 2.62 mm1
c = 13.3798 (12) ÅT = 293 K
β = 106.502 (3)°Plane, colourless
V = 2259.3 (4) Å30.19 × 0.16 × 0.12 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer4218 independent reflections
Radiation source: fine-focus sealed tube3453 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000))h = −12→11
Tmin = 0.636, Tmax = 0.744k = −22→21
7229 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.073w = 1/[σ2(Fo2) + (0.03P)2 + 0.16P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4218 reflectionsΔρmax = 0.47 e Å3
307 parametersΔρmin = −0.43 e Å3
2 restraintsAbsolute structure: Flack (1983), 1983 Freidel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.079 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.69851 (5)0.33467 (3)0.27140 (4)0.03385 (16)
Zn20.99585 (6)0.30433 (3)0.49316 (5)0.03673 (16)
Cl30.76987 (13)0.34082 (7)0.48194 (10)0.0360 (3)
Cl20.91611 (14)0.29488 (8)0.27124 (10)0.0366 (4)
Cl10.60068 (15)0.21961 (8)0.23650 (12)0.0457 (4)
Cl41.08005 (15)0.42235 (7)0.50920 (12)0.0478 (4)
N10.5066 (4)0.3839 (2)0.2553 (3)0.0315 (10)
N20.7513 (4)0.4444 (2)0.2596 (3)0.0321 (10)
C110.6385 (5)0.4924 (3)0.2474 (3)0.0277 (11)
C120.5088 (5)0.4583 (3)0.2469 (4)0.0303 (12)
C10.3845 (6)0.3509 (4)0.2559 (4)0.0489 (16)
H10.38280.29930.26350.059*
C20.2584 (6)0.3918 (4)0.2455 (5)0.0515 (16)
H20.17520.36750.24610.062*
C80.7830 (7)0.5967 (3)0.2373 (4)0.0468 (16)
H80.79440.64760.22780.056*
C70.6504 (6)0.5691 (3)0.2363 (4)0.0367 (13)
C100.8756 (6)0.4746 (3)0.2632 (4)0.0366 (12)
H100.95380.44330.27390.044*
C30.2615 (6)0.4669 (4)0.2345 (4)0.0495 (15)
H30.17880.49430.22660.059*
C40.3884 (6)0.5051 (3)0.2347 (4)0.0401 (14)
C60.5230 (6)0.6132 (3)0.2241 (4)0.0447 (14)
H60.52710.66460.21450.054*
C50.4016 (7)0.5830 (3)0.2260 (4)0.0497 (16)
H50.32380.61360.22150.060*
N40.9434 (4)0.1943 (2)0.4907 (3)0.0284 (9)
N31.1864 (4)0.2591 (2)0.4971 (3)0.0357 (10)
C130.8177 (6)0.1637 (3)0.4836 (4)0.0408 (13)
H130.74050.19480.47890.049*
C231.1830 (5)0.1816 (3)0.4989 (4)0.0342 (13)
C221.3047 (6)0.2925 (3)0.4985 (4)0.0403 (15)
H221.30850.34450.49920.048*
C241.0533 (6)0.1489 (3)0.4961 (4)0.0309 (12)
C161.0413 (7)0.0691 (3)0.4961 (4)0.0429 (15)
C171.1629 (7)0.0258 (4)0.5004 (4)0.0515 (17)
H171.1565−0.02610.50160.062*
C150.9031 (7)0.0404 (3)0.4884 (4)0.0477 (15)
H150.8885−0.01100.48730.057*
C181.2876 (7)0.0575 (4)0.5027 (4)0.0545 (18)
H181.36570.02740.50570.065*
C140.7984 (7)0.0854 (3)0.4831 (4)0.0428 (15)
H140.70940.06600.47880.051*
C191.3008 (6)0.1378 (3)0.5006 (4)0.0450 (15)
C201.4266 (7)0.1761 (4)0.5006 (5)0.063 (2)
H201.50860.15000.50160.075*
C211.4242 (7)0.2522 (5)0.4989 (5)0.0599 (19)
H211.50590.27790.49800.072*
C90.8946 (7)0.5507 (3)0.2517 (5)0.0473 (16)
H90.98340.56950.25400.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0277 (3)0.0256 (3)0.0473 (3)0.0018 (3)0.0090 (2)0.0012 (3)
Zn20.0278 (3)0.0222 (3)0.0593 (4)0.0017 (3)0.0111 (3)−0.0001 (3)
Cl30.0305 (8)0.0301 (7)0.0480 (8)0.0072 (5)0.0121 (6)−0.0017 (6)
Cl20.0308 (8)0.0313 (8)0.0493 (8)0.0074 (6)0.0141 (6)−0.0001 (6)
Cl10.0413 (9)0.0267 (8)0.0675 (10)−0.0035 (7)0.0127 (7)−0.0038 (7)
Cl40.0398 (8)0.0239 (7)0.0723 (10)−0.0047 (6)0.0037 (7)0.0008 (6)
N10.025 (3)0.033 (3)0.036 (2)0.0032 (19)0.0084 (18)−0.0008 (18)
N20.029 (2)0.027 (2)0.042 (2)0.009 (2)0.0108 (18)0.0046 (18)
C110.030 (3)0.022 (3)0.030 (2)0.002 (2)0.006 (2)0.0006 (19)
C120.029 (3)0.029 (3)0.032 (3)0.009 (2)0.006 (2)−0.003 (2)
C10.047 (4)0.043 (4)0.058 (4)0.000 (3)0.016 (3)0.007 (3)
C20.026 (3)0.066 (5)0.065 (4)0.004 (3)0.016 (3)0.004 (3)
C80.067 (5)0.020 (3)0.049 (3)−0.008 (3)0.010 (3)−0.002 (2)
C70.048 (3)0.022 (3)0.038 (3)0.012 (2)0.008 (2)0.001 (2)
C100.029 (3)0.027 (3)0.052 (3)0.002 (2)0.009 (2)0.003 (2)
C30.033 (3)0.060 (4)0.056 (4)0.016 (3)0.013 (3)0.002 (3)
C40.031 (3)0.049 (4)0.039 (3)0.014 (3)0.008 (2)−0.002 (3)
C60.062 (4)0.028 (3)0.042 (3)0.016 (3)0.011 (3)0.005 (2)
C50.045 (4)0.047 (4)0.056 (4)0.027 (3)0.011 (3)−0.002 (3)
N40.025 (2)0.021 (2)0.040 (2)−0.0010 (18)0.0112 (17)0.0033 (17)
N30.030 (3)0.034 (3)0.042 (2)0.007 (2)0.0083 (19)0.0000 (19)
C130.031 (3)0.034 (3)0.054 (3)−0.004 (3)0.007 (2)0.009 (3)
C230.034 (3)0.039 (4)0.029 (3)0.010 (2)0.007 (2)0.001 (2)
C220.021 (3)0.049 (4)0.052 (4)−0.009 (3)0.011 (2)0.000 (3)
C240.038 (3)0.022 (3)0.033 (3)0.010 (2)0.010 (2)0.001 (2)
C160.071 (4)0.025 (3)0.032 (3)0.012 (3)0.013 (3)0.002 (2)
C170.081 (5)0.037 (3)0.036 (3)0.027 (4)0.016 (3)−0.001 (2)
C150.073 (5)0.021 (3)0.049 (3)−0.008 (3)0.016 (3)−0.004 (2)
C180.066 (5)0.047 (4)0.050 (4)0.032 (4)0.015 (3)0.004 (3)
C140.047 (4)0.021 (3)0.059 (4)−0.008 (3)0.012 (3)0.002 (2)
C190.045 (4)0.054 (4)0.034 (3)0.025 (3)0.009 (2)0.005 (3)
C200.031 (3)0.098 (6)0.059 (4)0.019 (4)0.012 (3)−0.010 (4)
C210.022 (3)0.085 (6)0.074 (5)0.000 (4)0.015 (3)0.001 (4)
C90.042 (4)0.031 (3)0.070 (4)−0.007 (3)0.017 (3)0.007 (3)

Geometric parameters (Å, °)

Zn1—Cl12.2629 (16)C4—C51.406 (8)
Zn1—Cl22.2596 (15)C6—C51.318 (8)
Zn1—Cl32.7049 (14)C6—H60.9300
Zn1—N12.041 (4)C5—H50.9300
Zn1—N22.046 (4)N4—C131.332 (6)
Zn2—Cl22.8525 (15)N4—C241.338 (6)
Zn2—Cl32.2839 (14)N3—C221.305 (7)
Zn2—Cl42.2545 (14)N3—C231.387 (7)
Zn2—N32.031 (4)C13—C141.412 (7)
Zn2—N42.032 (4)C13—H130.9300
N1—C121.335 (6)C23—C191.395 (7)
N1—C11.341 (7)C23—C241.397 (7)
N2—C101.328 (6)C22—C211.380 (9)
N2—C111.376 (6)C22—H220.9300
C11—C71.388 (7)C24—C161.431 (7)
C11—C121.414 (7)C16—C171.413 (7)
C12—C41.423 (7)C16—C151.431 (8)
C1—C21.413 (8)C17—C181.345 (8)
C1—H10.9300C17—H170.9300
C2—C31.353 (8)C15—C141.294 (9)
C2—H20.9300C15—H150.9300
C8—C91.342 (8)C18—C191.443 (9)
C8—C71.393 (8)C18—H180.9300
C8—H80.9300C14—H140.9300
C7—C61.452 (7)C19—C201.416 (9)
C10—C91.386 (8)C20—C211.359 (10)
C10—H100.9300C20—H200.9300
C3—C41.424 (8)C21—H210.9300
C3—H30.9300C9—H90.9300
Cl1—Zn1—Cl293.58 (6)C5—C6—H6118.8
Cl1—Zn1—Cl3102.79 (5)C7—C6—H6118.8
Cl2—Zn1—Cl392.74 (5)C6—C5—C4120.8 (5)
N1—Zn1—Cl192.42 (13)C6—C5—H5119.6
N2—Zn1—Cl1163.25 (11)C4—C5—H5119.6
N1—Zn1—Cl2170.64 (13)C13—N4—C24118.5 (5)
N2—Zn1—Cl292.27 (12)C13—N4—Zn2128.7 (4)
N1—Zn1—Cl392.93 (11)C24—N4—Zn2112.8 (3)
N2—Zn1—Cl392.59 (11)C22—N3—C23118.8 (5)
N1—Zn1—N280.04 (17)C22—N3—Zn2129.3 (4)
Cl3—Zn2—Cl493.71 (6)C23—N3—Zn2111.8 (3)
N3—Zn2—Cl3172.83 (13)N4—C13—C14121.8 (5)
N4—Zn2—Cl392.09 (12)N4—C13—H13119.1
N3—Zn2—Cl493.28 (14)C14—C13—H13119.1
N4—Zn2—Cl4172.95 (12)N3—C23—C19122.5 (5)
N3—Zn2—N481.04 (16)N3—C23—C24116.4 (4)
Zn2—Cl3—Zn190.98 (4)C19—C23—C24121.1 (5)
C12—N1—C1118.3 (5)N3—C22—C21121.3 (6)
C12—N1—Zn1113.6 (3)N3—C22—H22119.4
C1—N1—Zn1128.0 (4)C21—C22—H22119.4
C10—N2—C11117.2 (4)N4—C24—C23117.9 (4)
C10—N2—Zn1129.8 (4)N4—C24—C16122.6 (5)
C11—N2—Zn1113.1 (3)C23—C24—C16119.4 (5)
N2—C11—C7122.6 (5)C17—C16—C15125.8 (5)
N2—C11—C12115.5 (4)C17—C16—C24118.5 (6)
C7—C11—C12122.0 (5)C15—C16—C24115.7 (5)
N1—C12—C11117.7 (4)C18—C17—C16121.9 (6)
N1—C12—C4124.2 (5)C18—C17—H17119.1
C11—C12—C4118.0 (5)C16—C17—H17119.1
N1—C1—C2122.5 (6)C14—C15—C16120.6 (5)
N1—C1—H1118.8C14—C15—H15119.7
C2—C1—H1118.8C16—C15—H15119.7
C3—C2—C1118.5 (6)C17—C18—C19120.4 (6)
C3—C2—H2120.7C17—C18—H18119.8
C1—C2—H2120.7C19—C18—H18119.8
C9—C8—C7120.8 (5)C15—C14—C13120.8 (6)
C9—C8—H8119.6C15—C14—H14119.6
C7—C8—H8119.6C13—C14—H14119.6
C11—C7—C8117.2 (5)C23—C19—C20117.0 (6)
C11—C7—C6116.8 (5)C23—C19—C18118.6 (6)
C8—C7—C6126.0 (5)C20—C19—C18124.4 (6)
N2—C10—C9123.2 (5)C21—C20—C19118.2 (6)
N2—C10—H10118.4C21—C20—H20120.9
C9—C10—H10118.4C19—C20—H20120.9
C2—C3—C4121.5 (5)C20—C21—C22122.2 (7)
C2—C3—H3119.3C20—C21—H21118.9
C4—C3—H3119.3C22—C21—H21118.9
C5—C4—C12119.9 (5)C8—C9—C10119.1 (6)
C5—C4—C3125.2 (5)C8—C9—H9120.5
C12—C4—C3114.9 (5)C10—C9—H9120.5
C5—C6—C7122.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.683.229 (7)118
C6—H6···Cl2i0.932.773.525 (6)139
C10—H10···Cl20.932.683.235 (6)119
C13—H13···Cl30.932.623.200 (6)121
C17—H17···Cl3ii0.932.673.500 (7)149
C18—H18···Cl4ii0.932.823.742 (7)173
C22—H22···Cl40.932.683.238 (6)119

Symmetry codes: (i) x−1/2, y+1/2, z; (ii) x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2764).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. [PubMed]
  • Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc.121, 4710–4711.
  • Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography