PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m566.
Published online 2009 April 25. doi:  10.1107/S1600536809013920
PMCID: PMC2977611

Bis[4-methyl-2-(4-methyl­phenyldiazen­yl)phenolato-κ2 N,O]nickel(II)

Abstract

In the crystal structure of the title compound, [Ni(C14H13N2O)2], the NiII ion is located on an inversion center and is coordinated by two 4-methyl-2-(4-methyl­phenyl­diazen­yl)phenolate anions in a slightly distorted square-planar geometry. Within the anion, the two benzene rings are twisted from each other with a dihedral angle of 45.97 (12)°. No hydrogen bonding is found in the crystal structure.

Related literature

For general background, see: Frey (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m566-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H13N2O)2]
  • M r = 509.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m566-efi1.jpg
  • a = 9.5211 (10) Å
  • b = 10.8162 (11) Å
  • c = 12.2647 (13) Å
  • β = 105.367 (2)°
  • V = 1217.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.83 mm−1
  • T = 293 K
  • 0.15 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.885, T max = 0.920
  • 7063 measured reflections
  • 2775 independent reflections
  • 1890 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.099
  • S = 1.02
  • 2775 reflections
  • 212 parameters
  • All H-atom parameters refined
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013920/xu2508sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013920/xu2508Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Natural Science Foundation of China (grant Nos. 20872080 and 20772072) is gratefully acknowledged.

supplementary crystallographic information

Comment

Nickel hydride complexes are one of the most valuable catalysts and intermediates. Frey (2005) has successfully synthesized a new type of nickel hydride Ni(H)(ortho-S—C6H4PPh2)(PMe3)2. In the previous work in our lab, we have reported similar reactions between nickel or cobalt hydrides and phenol derivates. So the reaction between Ni(H)(ortho-S—C6H4PPh2)(PMe3)2 and phenol derivates was carried out to explore the acidity of the hydrogen ligand. The title compound, as an unexpected compound, was synthesized.

The molecular structure is shown in Fig. 1. The NiII ion is located in an inversion center and coordinated by two 2-(4'-methylphenylazo)-4-methylphenol anions in a square-planar geometry (Table 1). No hydrogen bonding is found in the crystal structure.

Experimental

Ni(H)(ortho-S-C6H4PPh2)(PMe3)2 (1.19 g, 2.35 mmol) and 2-(4'-methylphenylazo)-4-methylphenol (0.54 g, 2.38 mmol) was mixed in -80 °C. The mixture was stirred between -20 °C to 0 °C for 18 h and a red solution was formed. Green residue was filtered off, Then the solvent was removed in vacuum. The residue was extracted with pentane, and then diethyl ether. The extractions were kept in -20°C. The title compound was obtained from the pentane extractions as green crystals for X-ray diffraction.

Refinement

The H atoms were geometrically placed and refined isotropically.

Figures

Fig. 1.
View of the title compound, showing 25% displacement ellipsoids. H atoms were omitted. Symmetry code: (A) 2 - x, 2 - y, -z.

Crystal data

[Ni(C14H13N2O)2]F(000) = 532
Mr = 509.24Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1666 reflections
a = 9.5211 (10) Åθ = 2.6–23.4°
b = 10.8162 (11) ŵ = 0.83 mm1
c = 12.2647 (13) ÅT = 293 K
β = 105.367 (2)°Block, green
V = 1217.9 (2) Å30.15 × 0.15 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer2775 independent reflections
Radiation source: fine-focus sealed tube1890 reflections with I > 2σ(I)
graphiteRint = 0.032
ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→11
Tmin = 0.885, Tmax = 0.920k = −13→13
7063 measured reflectionsl = −9→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099All H-atom parameters refined
S = 1.02w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1292P] where P = (Fo2 + 2Fc2)/3
2775 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni1.00001.00000.00000.04172 (15)
N10.96662 (19)0.83618 (16)0.04286 (15)0.0412 (4)
N21.02859 (19)0.77982 (17)0.13462 (15)0.0448 (5)
O1.0688 (2)1.04670 (16)0.14634 (14)0.0552 (5)
C71.1204 (2)0.8429 (2)0.22272 (18)0.0428 (5)
C10.8685 (2)0.75494 (19)−0.03615 (18)0.0402 (5)
C60.9169 (3)0.6442 (2)−0.0673 (2)0.0440 (5)
C40.6804 (3)0.6040 (2)−0.1919 (2)0.0474 (6)
C50.8231 (3)0.5700 (2)−0.1455 (2)0.0480 (6)
C20.7255 (3)0.7908 (2)−0.0813 (2)0.0527 (6)
C121.1914 (3)0.7700 (3)0.3162 (2)0.0524 (6)
C81.1345 (3)0.9729 (2)0.2279 (2)0.0462 (6)
C30.6333 (3)0.7146 (2)−0.1575 (2)0.0559 (7)
C91.2225 (3)1.0238 (3)0.3292 (2)0.0571 (7)
C111.2798 (3)0.8206 (3)0.4119 (2)0.0560 (7)
C101.2937 (3)0.9492 (3)0.4156 (2)0.0595 (7)
C130.5765 (5)0.5215 (4)−0.2756 (4)0.0741 (10)
C141.3546 (5)0.7421 (5)0.5127 (3)0.0827 (11)
H101.347 (3)0.987 (2)0.479 (2)0.050 (7)*
H50.862 (3)0.494 (2)−0.165 (2)0.048 (7)*
H61.014 (2)0.624 (2)−0.0350 (18)0.047 (6)*
H121.173 (3)0.686 (2)0.311 (2)0.061 (8)*
H30.541 (3)0.737 (2)−0.185 (2)0.066 (8)*
H91.232 (3)1.111 (3)0.333 (2)0.066 (8)*
H13B0.594 (4)0.440 (4)−0.253 (3)0.127 (16)*
H13A0.603 (5)0.522 (4)−0.338 (4)0.127 (19)*
H20.689 (3)0.867 (3)−0.057 (2)0.076 (8)*
H13C0.491 (5)0.541 (3)−0.290 (3)0.106 (15)*
H14C1.454 (4)0.752 (4)0.527 (3)0.111 (13)*
H14A1.318 (4)0.761 (4)0.576 (3)0.119 (14)*
H14B1.341 (5)0.663 (5)0.504 (4)0.16 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni0.0496 (3)0.0325 (2)0.0400 (2)−0.00195 (18)0.00673 (18)−0.00217 (18)
N10.0429 (10)0.0346 (10)0.0423 (10)−0.0008 (8)0.0046 (8)−0.0015 (8)
N20.0455 (11)0.0419 (11)0.0439 (11)0.0006 (8)0.0062 (9)0.0001 (9)
O0.0800 (13)0.0372 (8)0.0422 (9)−0.0034 (8)0.0052 (9)−0.0025 (8)
C70.0422 (12)0.0466 (13)0.0379 (12)0.0001 (10)0.0076 (10)−0.0020 (10)
C10.0418 (13)0.0339 (11)0.0414 (12)−0.0036 (9)0.0047 (10)0.0028 (9)
C60.0388 (13)0.0380 (12)0.0513 (14)0.0008 (10)0.0050 (10)0.0000 (11)
C40.0496 (14)0.0398 (13)0.0466 (13)−0.0069 (10)0.0020 (11)0.0021 (11)
C50.0507 (14)0.0354 (13)0.0547 (15)0.0018 (11)0.0085 (12)−0.0051 (11)
C20.0449 (14)0.0416 (14)0.0648 (16)0.0060 (11)0.0029 (12)−0.0021 (12)
C120.0568 (16)0.0512 (16)0.0472 (14)0.0059 (13)0.0103 (12)0.0003 (12)
C80.0476 (14)0.0508 (15)0.0414 (13)−0.0060 (10)0.0142 (11)−0.0070 (10)
C30.0388 (14)0.0512 (15)0.0672 (17)0.0062 (12)−0.0045 (12)0.0028 (13)
C90.0657 (17)0.0606 (18)0.0435 (14)−0.0125 (13)0.0119 (13)−0.0114 (12)
C110.0481 (14)0.0743 (19)0.0431 (14)0.0056 (13)0.0077 (11)−0.0004 (13)
C100.0530 (16)0.083 (2)0.0392 (14)−0.0108 (15)0.0070 (12)−0.0122 (14)
C130.067 (2)0.061 (2)0.075 (2)−0.0100 (17)−0.0148 (19)−0.0089 (17)
C140.074 (3)0.112 (4)0.0518 (19)0.013 (2)−0.0005 (17)0.013 (2)

Geometric parameters (Å, °)

Ni—Oi1.8118 (16)C2—C31.374 (3)
Ni—O1.8118 (16)C2—H20.98 (3)
Ni—N11.8988 (18)C12—C111.364 (3)
Ni—N1i1.8988 (18)C12—H120.92 (2)
N1—N21.278 (2)C8—C91.413 (3)
N1—C11.451 (3)C3—H30.89 (2)
N2—C71.377 (3)C9—C101.361 (4)
O—C81.303 (3)C9—H90.95 (3)
C7—C121.408 (3)C11—C101.397 (4)
C7—C81.412 (3)C11—C141.513 (4)
C1—C61.373 (3)C10—H100.91 (3)
C1—C21.382 (3)C13—H13B0.92 (4)
C6—C51.381 (3)C13—H13A0.87 (5)
C6—H60.93 (2)C13—H13C0.81 (4)
C4—C51.377 (3)C14—H14C0.92 (4)
C4—C31.382 (3)C14—H14A0.95 (4)
C4—C131.514 (4)C14—H14B0.86 (5)
C5—H50.95 (2)
Oi—Ni—O180.000 (1)C11—C12—H12121.2 (16)
Oi—Ni—N188.33 (8)C7—C12—H12116.8 (16)
O—Ni—N191.67 (8)O—C8—C7123.7 (2)
Oi—Ni—N1i91.67 (8)O—C8—C9119.2 (2)
O—Ni—N1i88.33 (8)C7—C8—C9117.0 (2)
N1—Ni—N1i180.0C2—C3—C4121.8 (2)
N2—N1—C1111.38 (17)C2—C3—H3119.1 (17)
N2—N1—Ni128.07 (14)C4—C3—H3119.2 (17)
C1—N1—Ni120.38 (13)C10—C9—C8120.7 (3)
N1—N2—C7120.24 (19)C10—C9—H9122.2 (16)
C8—O—Ni124.29 (15)C8—C9—H9117.0 (16)
N2—C7—C12115.5 (2)C12—C11—C10117.3 (2)
N2—C7—C8124.1 (2)C12—C11—C14121.8 (3)
C12—C7—C8120.1 (2)C10—C11—C14120.8 (3)
C6—C1—C2120.0 (2)C9—C10—C11122.8 (3)
C6—C1—N1120.67 (19)C9—C10—H10117.0 (15)
C2—C1—N1119.3 (2)C11—C10—H10120.2 (14)
C1—C6—C5119.8 (2)C4—C13—H13B109 (2)
C1—C6—H6117.3 (15)C4—C13—H13A108 (3)
C5—C6—H6122.9 (15)H13B—C13—H13A101 (3)
C5—C4—C3118.0 (2)C4—C13—H13C115 (3)
C5—C4—C13121.3 (3)H13B—C13—H13C114 (3)
C3—C4—C13120.8 (3)H13A—C13—H13C108 (4)
C4—C5—C6121.2 (2)C11—C14—H14C109 (2)
C4—C5—H5121.9 (15)C11—C14—H14A111 (2)
C6—C5—H5116.9 (15)H14C—C14—H14A113 (3)
C3—C2—C1119.2 (2)C11—C14—H14B115 (3)
C3—C2—H2120.0 (15)H14C—C14—H14B104 (4)
C1—C2—H2120.8 (15)H14A—C14—H14B104 (4)
C11—C12—C7122.0 (3)

Symmetry codes: (i) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2508).

References

  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Frey, M. (2005). PhD thesis, Darmstadt University of Technology, Germany.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography