PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m562–m563.
Published online 2009 April 25. doi:  10.1107/S1600536809014639
PMCID: PMC2977608

μ-Biphenyl-3,3′,4,4′-tetra­carboxyl­ato-κ2 O 3:O 3′-bis­[triaqua­(2,2′-bipyridyl-κ2 N,N′)nickel(II)] hexa­hydrate

Abstract

The asymmetric unit of the title complex, [Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O, contains one NiII atom, one 2,2′-bipyridine ligand, three coordinated water mol­ecules, one-half of a fully deprotonated biphenyl-3,3′,4,4′-tetra­carboxyl­ate anion and three lattice water mol­ecules. The NiII atom displays a distorted NiN2O4 octa­hedral coordination formed by one carboxyl­ate O atom, three water O atoms and two N atoms of the chelating ligand. The complete biphenyl-3,3′,4,4′-tetra­carboxyl­ate ligand displays inversion symmetry and links two symmetry-related NiII atoms into a binuclear complex. Neighbouring complex mol­ecules are linked through O—H(...)O hydrogen bonds into a three-dimensional structure. Additional O—H(...)O hydrogen bonds between the lattice water mol­ecules help to consolidate the crystal packing.

Related literature

For other metal complexes with biphenyl-3,3′,4,4′-tetra­carboxyl­ate as ligand, see: Hao et al. (2005 [triangle]); Wang et al. (2005 [triangle], 2006 [triangle], 2007 [triangle]). For related structures containing biphenyl-3,3′,4,4′-tetra­carboxyl­ate and neutral chelating ligands, see: Zhu et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m562-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2O
  • M r = 972.19
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m562-efi1.jpg
  • a = 7.5126 (14) Å
  • b = 12.088 (2) Å
  • c = 12.285 (2) Å
  • α = 105.445 (2)°
  • β = 98.075 (2)°
  • γ = 92.162 (3)°
  • V = 1061.4 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 296 K
  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.829, T max = 0.868
  • 5556 measured reflections
  • 3698 independent reflections
  • 2526 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.172
  • S = 1.05
  • 3698 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014639/wm2225sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014639/wm2225Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Shanghai University for financial support.

supplementary crystallographic information

Comment

Coordination compounds of biphenyl-3,3',4,4'-tetracarboxylic acid have been investigated previously. As expected, the deprotonated ligand coordinates to metal ions in a versatile mode due to its multidentate character (Hao et al., 2005; Wang et al., 2005; 2006; 2007). Upon adding chelating ligands, such as 2,2'-bipyridine or 1,10-phenanthroline, ternary coordination polymers can be formed (Zhu et al., 2008a). In all these complexes, biphenyl-3,3',4,4'-tetracarboxylate acts as counter ion and/or multidentate ligand. Here we present the crystal structure of the dinuclear complex [Ni2(C10H8N2)2(C16H6O8)(H2O)6].6H2O, (I).

The unique Ni atom in the structure of complex (I) (Fig. 1) is in a distorted octahedral coordination sphere formed by one carboxylate O, three water O and two N atoms with Ni—O and Ni—N bond lengths in the range 2.063 (4) Å - 2.076 (4) Å with σ=0.87 (Zhu et al., 2008b). The fully deprotonated biphenyl-3,3',4,4'-tetracarboxylate ligand displays inversion symmetry and links two symmetry-related NiII atoms. Due to symmetric reason, the two benzene rings of the biphenyl ligand are coplanar. The two pyridine rings in the 2,2'-bipyridine molecule have a torsion angle of 4.7 (8)°. The carboxylate group that coordinate to nickel is almost coplanar with the benzene ring (torsion angle 8.6 (8)°), while the free carboxylate has a torsion angle of 72.2 (7)° with the benzene ring which is almost perpendicular each other. The intramolecular distance between the two nickel(II) ions is 14.788 (11) Å.

As expected, there are considerable hydrogen bonds in the structure. Table 2 lists bond distances and angles. These H-bonds link dinuclear complex together to a three-dimensional structure (Fig 2.). The uncoordinated crystal lattice water molecules interact through additional hydrogen bonds, as shown in Fig. 3, and thus help to consolidate the crystal packing.

Experimental

A mixture of biphenyl-3,3',4,4'-tetracarboxylic acid dianhydride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), NaOH (2 mmol) and Ni(NO3)2 (1 mmol) in 8 ml H2O was placed in a 25 ml Teflon reactor, which was sealed and heated in a oven at 433 K for 72 h. Then the autoclave was cooled to room temperature at the rate of 10 K to get light-blue flat crystals of the title compound (in ca 85% yield based on biphenyltetracarboxylic dianhydride). The crystals were isolated by filtration and washed with water.

Refinement

The aromatic H atoms were generated geometrically and were included in the refinement in the riding model approximation (d(C—H) = 0.93 Å, Uiso=1.2Ueq(C)). The H atoms of the water molecules were identified in difference Fourier syntheses and were refined with distance restraints of d(O—H) = 0.85 Å.

Figures

Fig. 1.
The asymmetric unit in the structure of complex (I), displayed with ellipsoids at the 50% probability level. Dashed lines represent hydrogen bonds.
Fig. 2.
Crystal packing in the crystal structure of compound (I) viewed down the a axis with ellipsoids ath the 30% probability level.
Fig. 3.
(a) The π—π interaction between adjacent 2, 2'-bipyridine molecules. (b) The crystal lattice water molecules arranged in chains via H -bonds; other atoms are omitted for clarity.

Crystal data

[Ni2(C16H6O8)(C10H8N2)2(H2O)6]·6H2OZ = 1
Mr = 972.19F(000) = 506
Triclinic, P1Dx = 1.521 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5126 (14) ÅCell parameters from 1042 reflections
b = 12.088 (2) Åθ = 2.8–21.2°
c = 12.285 (2) ŵ = 0.97 mm1
α = 105.445 (2)°T = 296 K
β = 98.075 (2)°Flat, light-blue
γ = 92.162 (3)°0.20 × 0.20 × 0.15 mm
V = 1061.4 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3698 independent reflections
Radiation source: fine-focus sealed tube2526 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −8→8
Tmin = 0.829, Tmax = 0.868k = −11→14
5556 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0835P)2 + 0.0076P]
3698 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.76324 (9)0.27456 (6)0.46907 (5)0.0292 (2)
C10.8729 (8)0.3451 (5)0.2678 (4)0.0353 (13)
C20.8455 (7)0.4289 (4)0.1965 (4)0.0279 (12)
C30.7072 (7)0.5022 (4)0.2062 (4)0.0271 (11)
C40.6778 (8)0.5682 (5)0.1309 (5)0.0390 (14)
H40.58160.61460.13450.047*
C50.7894 (8)0.5668 (5)0.0497 (5)0.0439 (16)
H50.76620.6122−0.00020.053*
C60.9365 (7)0.4985 (4)0.0411 (4)0.0294 (12)
C70.9582 (7)0.4283 (4)0.1148 (4)0.0325 (13)
H71.05110.37930.10950.039*
C80.5935 (8)0.5223 (4)0.3010 (5)0.0319 (13)
C90.7786 (9)0.2720 (6)0.7187 (5)0.0498 (16)
H90.79150.35190.73630.060*
C100.7713 (11)0.2212 (7)0.8067 (6)0.071 (2)
H100.78050.26580.88200.086*
C110.7506 (12)0.1055 (7)0.7801 (7)0.078 (2)
H110.74300.06920.83740.093*
C120.7407 (10)0.0414 (6)0.6699 (6)0.064 (2)
H120.7271−0.03850.65160.077*
C130.7509 (7)0.0962 (5)0.5854 (5)0.0384 (14)
C140.7468 (7)0.0348 (5)0.4639 (5)0.0362 (13)
C150.7461 (9)−0.0842 (5)0.4239 (6)0.0596 (19)
H150.7454−0.12920.47450.072*
C160.7463 (11)−0.1351 (6)0.3104 (7)0.075 (2)
H160.7468−0.21470.28370.091*
C170.7460 (10)−0.0692 (6)0.2371 (6)0.070 (2)
H170.7472−0.10230.15970.084*
C180.7437 (8)0.0492 (5)0.2803 (5)0.0490 (16)
H180.73950.09460.22970.059*
N10.7680 (6)0.2112 (4)0.6097 (4)0.0375 (11)
N20.7472 (6)0.1002 (4)0.3901 (4)0.0333 (10)
O10.7508 (5)0.3349 (3)0.3258 (3)0.0327 (9)
O21.0074 (6)0.2870 (4)0.2630 (4)0.0519 (12)
O30.6703 (5)0.5796 (3)0.3995 (3)0.0357 (9)
O40.4305 (5)0.4876 (3)0.2757 (3)0.0414 (10)
O1W0.7793 (5)0.4475 (3)0.5584 (3)0.0378 (9)
H1WA0.70750.45760.60390.045*
H1WB0.75280.48640.51080.045*
O2W1.0407 (5)0.2754 (3)0.4820 (3)0.0366 (9)
H2WA1.06980.26470.41830.044*
H2WB1.08100.33120.53830.044*
O3W0.4835 (5)0.2653 (3)0.4440 (3)0.0372 (9)
H3WA0.42380.31410.48520.045*
H3WB0.44550.26380.37760.045*
O4W0.3480 (6)0.2550 (4)0.2175 (4)0.0662 (13)
H4WA0.23650.26980.22010.079*
H4WB0.34720.23630.14540.079*
O5W0.3527 (11)0.0578 (6)0.0358 (6)0.141 (3)
H5WA0.42550.11620.03710.169*
H5WB0.3141−0.0088−0.00250.169*
O6W0.9624 (19)0.0848 (9)0.0429 (9)0.288 (7)
H6WA0.98440.10420.11560.345*
H6WB0.98080.15780.06310.345*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0322 (4)0.0294 (4)0.0321 (4)0.0051 (3)0.0127 (3)0.0145 (3)
C10.038 (3)0.042 (3)0.033 (3)0.006 (3)0.016 (3)0.015 (3)
C20.028 (3)0.033 (3)0.027 (3)0.006 (2)0.012 (2)0.012 (2)
C30.030 (3)0.028 (3)0.026 (3)0.004 (2)0.014 (2)0.008 (2)
C40.038 (3)0.048 (4)0.041 (3)0.019 (3)0.023 (3)0.019 (3)
C50.047 (4)0.056 (4)0.047 (4)0.016 (3)0.022 (3)0.036 (3)
C60.034 (3)0.036 (3)0.023 (3)0.007 (2)0.015 (2)0.012 (2)
C70.038 (3)0.037 (3)0.032 (3)0.013 (3)0.017 (2)0.019 (2)
C80.038 (3)0.027 (3)0.038 (3)0.009 (2)0.018 (3)0.015 (2)
C90.061 (4)0.049 (4)0.042 (4)0.002 (3)0.011 (3)0.017 (3)
C100.098 (6)0.083 (6)0.038 (4)0.000 (5)0.012 (4)0.025 (4)
C110.118 (7)0.074 (6)0.056 (5)−0.004 (5)0.015 (5)0.044 (4)
C120.091 (6)0.059 (5)0.055 (5)0.005 (4)0.014 (4)0.038 (4)
C130.034 (3)0.039 (3)0.046 (4)0.000 (3)0.004 (3)0.018 (3)
C140.029 (3)0.029 (3)0.053 (4)0.002 (2)0.007 (3)0.016 (3)
C150.066 (5)0.041 (4)0.077 (5)0.003 (3)−0.003 (4)0.031 (4)
C160.111 (7)0.037 (4)0.069 (5)0.010 (4)0.000 (5)0.005 (4)
C170.086 (6)0.057 (5)0.058 (5)0.007 (4)0.017 (4)−0.003 (4)
C180.063 (4)0.046 (4)0.038 (4)0.009 (3)0.012 (3)0.009 (3)
N10.038 (3)0.043 (3)0.038 (3)0.011 (2)0.012 (2)0.017 (2)
N20.031 (3)0.034 (3)0.037 (3)0.004 (2)0.008 (2)0.013 (2)
O10.037 (2)0.038 (2)0.032 (2)0.0107 (17)0.0208 (17)0.0162 (17)
O20.051 (3)0.065 (3)0.065 (3)0.036 (2)0.039 (2)0.042 (2)
O30.038 (2)0.039 (2)0.029 (2)0.0016 (18)0.0134 (17)0.0021 (17)
O40.031 (2)0.054 (3)0.039 (2)0.0020 (19)0.0156 (18)0.0096 (19)
O1W0.043 (2)0.039 (2)0.040 (2)0.0053 (18)0.0209 (18)0.0157 (18)
O2W0.033 (2)0.044 (2)0.036 (2)0.0058 (18)0.0107 (17)0.0136 (18)
O3W0.033 (2)0.045 (2)0.039 (2)0.0084 (18)0.0172 (18)0.0134 (18)
O4W0.048 (3)0.075 (3)0.071 (3)0.005 (2)0.015 (2)0.009 (3)
O5W0.189 (8)0.116 (6)0.113 (6)0.008 (5)0.038 (5)0.019 (5)
O6W0.42 (2)0.237 (14)0.165 (11)−0.049 (13)0.054 (12)−0.011 (9)

Geometric parameters (Å, °)

Ni1—N22.063 (4)C11—H110.9300
Ni1—N12.064 (4)C12—C131.380 (8)
Ni1—O2W2.067 (3)C12—H120.9300
Ni1—O12.069 (3)C13—N11.340 (7)
Ni1—O3W2.075 (3)C13—C141.475 (8)
Ni1—O1W2.076 (4)C14—N21.352 (7)
C1—O21.252 (6)C14—C151.390 (8)
C1—O11.259 (6)C15—C161.366 (9)
C1—C21.508 (7)C15—H150.9300
C2—C31.388 (7)C16—C171.351 (10)
C2—C71.400 (6)C16—H160.9300
C3—C41.375 (7)C17—C181.390 (8)
C3—C81.513 (7)C17—H170.9300
C4—C51.387 (7)C18—N21.322 (7)
C4—H40.9300C18—H180.9300
C5—C61.403 (7)O1W—H1WA0.8201
C5—H50.9300O1W—H1WB0.8498
C6—C71.394 (7)O2W—H2WA0.8201
C6—C6i1.489 (9)O2W—H2WB0.8379
C7—H70.9300O3W—H3WA0.8542
C8—O41.248 (6)O3W—H3WB0.8200
C8—O31.266 (6)O4W—H4WA0.8664
C9—N11.334 (7)O4W—H4WB0.8528
C9—C101.384 (8)O5W—H5WA0.8722
C9—H90.9300O5W—H5WB0.8339
C10—C111.347 (9)O6W—H6WA0.8500
C10—H100.9300O6W—H6WB0.8500
C11—C121.359 (10)
N2—Ni1—N180.00 (17)C9—C10—H10120.9
N2—Ni1—O2W88.41 (16)C10—C11—C12120.3 (6)
N1—Ni1—O2W91.05 (16)C10—C11—H11119.9
N2—Ni1—O198.95 (15)C12—C11—H11119.9
N1—Ni1—O1178.17 (17)C11—C12—C13119.4 (7)
O2W—Ni1—O190.43 (14)C11—C12—H12120.3
N2—Ni1—O3W88.32 (16)C13—C12—H12120.3
N1—Ni1—O3W91.12 (16)N1—C13—C12121.3 (6)
O2W—Ni1—O3W175.71 (14)N1—C13—C14115.0 (5)
O1—Ni1—O3W87.34 (14)C12—C13—C14123.7 (6)
N2—Ni1—O1W176.34 (15)N2—C14—C15119.8 (6)
N1—Ni1—O1W96.33 (16)N2—C14—C13116.8 (5)
O2W—Ni1—O1W91.76 (15)C15—C14—C13123.4 (5)
O1—Ni1—O1W84.71 (14)C16—C15—C14120.2 (6)
O3W—Ni1—O1W91.67 (14)C16—C15—H15119.9
O2—C1—O1123.8 (5)C14—C15—H15119.9
O2—C1—C2119.8 (4)C17—C16—C15119.6 (7)
O1—C1—C2116.3 (5)C17—C16—H16120.2
C3—C2—C7119.6 (4)C15—C16—H16120.2
C3—C2—C1121.8 (4)C16—C17—C18118.4 (7)
C7—C2—C1118.6 (4)C16—C17—H17120.8
C4—C3—C2119.0 (4)C18—C17—H17120.8
C4—C3—C8116.6 (4)N2—C18—C17122.8 (6)
C2—C3—C8124.2 (4)N2—C18—H18118.6
C3—C4—C5121.1 (5)C17—C18—H18118.6
C3—C4—H4119.5C9—N1—C13118.1 (5)
C5—C4—H4119.5C9—N1—Ni1127.2 (4)
C4—C5—C6121.6 (5)C13—N1—Ni1114.7 (4)
C4—C5—H5119.2C18—N2—C14119.1 (5)
C6—C5—H5119.2C18—N2—Ni1127.5 (4)
C7—C6—C5116.1 (4)C14—N2—Ni1113.3 (4)
C7—C6—C6i121.8 (6)C1—O1—Ni1129.2 (3)
C5—C6—C6i122.1 (6)Ni1—O1W—H1WA109.6
C6—C7—C2122.5 (5)Ni1—O1W—H1WB108.5
C6—C7—H7118.8H1WA—O1W—H1WB109.4
C2—C7—H7118.8Ni1—O2W—H2WA109.7
O4—C8—O3125.0 (5)Ni1—O2W—H2WB105.3
O4—C8—C3118.2 (5)H2WA—O2W—H2WB124.6
O3—C8—C3116.7 (5)Ni1—O3W—H3WA122.7
N1—C9—C10122.8 (6)Ni1—O3W—H3WB109.6
N1—C9—H9118.6H3WA—O3W—H3WB105.8
C10—C9—H9118.6H4WA—O4W—H4WB100.3
C11—C10—C9118.1 (7)H5WA—O5W—H5WB143.0
C11—C10—H10120.9H6WA—O6W—H6WB74.3

Symmetry codes: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.821.912.720 (5)168
O1W—H1WB···O30.852.042.889 (5)176
O2W—H2WA···O20.821.992.708 (5)146
O2W—H2WB···O3iii0.842.062.715 (5)135
O3W—H3WA···O3ii0.851.882.723 (5)168
O3W—H3WB···O4W0.821.972.793 (6)178
O4W—H4WA···O2iv0.871.872.715 (6)164
O4W—H4WB···O5W0.852.222.803 (8)125
O5W—H5WB···O6Wv0.832.182.770 (15)128
O6W—H6WA···O20.852.443.091 (11)134
O6W—H6WA···O20.852.443.091 (11)134

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z+1; (iv) x−1, y, z; (v) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2225).

References

  • Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hao, X.-R., Su, Z.-M., Zhao, Y.-H., Shao, K.-Z. & Wang, Y. (2005). Acta Cryst. C61, m469–m471. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X. L., Cao, Q. & Wang, E. B. (2005). Eur. J. Inorg. Chem pp 3418–3421.
  • Wang, X. L., Cao, Q. & Wang, E. B. (2006). Cryst. Growth Des 6, 439–433.
  • Wang, J. J., Yang, M. L. & Hu, H. M. (2007). Z. Anorg. Allg. Chem 633, 341–345.
  • Zhu, S., Zhang, H. & Shao, M. (2008a). Transition Met. Chem 33, 669–680.
  • Zhu, S., Zhang, H. & Zhao, Y. (2008b). J. Mol. Struct 892, 420–426.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography