PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m561.
Published online 2009 April 25. doi:  10.1107/S1600536809014342
PMCID: PMC2977607

Imidazolium trans-bis­(imino­diacetato-κ3 O,N,O′)cobaltate(III)

Abstract

In the title compound, (C3H5N2)[Co(C4H5NO4)2], the cation and anion are located on a twofold rotation axis and inversion center, respectively. Inter­molecular N—H(...)O hydrogen bonds link the cations and anions into layers parallel to the ab plane. The crystal packing also exhibits weak C—H(...)O hydrogen bonds, including bifurcated hydrogen bonds, and C=O(...)π inter­actions.

Related literature

For hydrogen bonds in related compounds containing imidazolium, see: Allen (2002 [triangle]); Chattopadhyay et al. (1995 [triangle]); Gao et al. (2009 [triangle]); Hsu & Schlemper (1980 [triangle]); Rissanen & Pursiainen (2000 [triangle]). Bifurcated hydrogen bonds were discussed by Jeffrey et al. (1985 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m561-scheme1.jpg

Experimental

Crystal data

  • (C3H5N2)[Co(C4H5NO4)2]
  • M r = 390.20
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m561-efi14.jpg
  • a = 16.889 (3) Å
  • b = 5.2906 (10) Å
  • c = 16.901 (3) Å
  • V = 1510.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.19 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.783, T max = 0.797
  • 6218 measured reflections
  • 1495 independent reflections
  • 1299 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.079
  • S = 1.08
  • 1495 reflections
  • 111 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014342/cv2551sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014342/cv2551Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the National Natural Science Foundation of China (grant No. 20471033), the Natural Science Foundation of Shanxi Province (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province for financial support in 2008.

supplementary crystallographic information

Comment

In continuation of our study of weak C—H···O and C═O···π interactions in the building of three-dimensional structures (Gao et al., 2009), we present here the crystal structure of the title 1:1 adduct, (I).

In (I) (Fig. 1), the cation and anion are located on a two-fold rotation axis and inversion center, respectively. Strong N2—H···O2ii hydrogen bonds (Table 1) link imidazolium and trans-bis(iminodiacetato-N,O,O')cobalt(III) with the direction of (120) to form one-dimensional chains (Fig. 2) with graph-set notation C22(13). These chains further assemble to other trans-bis(iminodiacetato-N,O,O')cobalt(III) anions in two-dimensional structures on (001) plane via C5—H···O4vi, C5—H···O4viii and C3viii—H···O2iv (Table 1) hydrogen bonds, as shown in Fig. 2. Further, the layers assemble to a three-dimensional structure by strong N1—H···Oi hydrogen bond and weak C1═O2···π(centroid of imidazolium ring) interaction (Table 1). Imidazolium has three donors, two N—H and one C—H, the latter forming a non-conventional bifurcated hydrogen bond between imidazolium C5—H and carboxylate groups O4H and O4F from trans-bis(iminodiacetato-N,O,O')cobalt(III). Interestingly, this type of hydrogen bond in imidazolium compounds was found in a search of the Cambridge Structural Database (CSD version 5.30; Allen, 2002). Among the 200 hits for imidazolium compounds, there are only seven compounds having the similar bifurcated hydrogen bonds (C—H from imidazolium), namely, imidazolium hydrogen maleate (Hsu & Schlemper, 1980), benzo-18-crown-6 imidazolium clathrate perchlorate (Rissanen & Pursiainen, 2000), bis(imidazolium) bis(oxalato-O,O')copper(II) (Chattopadhyay et al., 1995). Their distances of H···O are in the range of 2.10 to 2.49 Å. However, analysis in sum of three angles about H atom are all less than 360° in the seven compounds, which indicated that these weak hydrogen bonds are not of characters of bifurcated hydrogen bonds from H-bond classification (Jeffrey et al., 1985).

Experimental

Chemicals were readily available from commercial sources and were used as received without further purification. To a 10 ml of solution containing imidazole (0.14 g, 2 mmol) in a flask with constant stirring, added dropwise Co(CH3COO)2.3H2O (0.23 g, 1 mmol) in 5 ml of aqueous solution and 5 ml aqueous solution containing iminodiacetic acid (0.27 g, 2 mmol) was added dropwise. The mixture was stirred for 3 h, and then filtered. The dark-red filtrate was left to stand at room temperature, and after three weeks, dark-red crystals of the title compound were formed.

Refinement

H atoms attached to C atoms of (I) were placed in geometrically idealized positions and refined with Uiso(H)=1.2Ueq(C). H atoms attached to N1 and N2 in (I) were located from difference Fourier maps, with fixed bond lengths, and refined using a riding model, with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 30% probability level and atomic numbering [symmetry codes: (i) -x, -y, -z; (ii) 1/2 - x, -1 - y, z].
Fig. 2.
A portion of the crystal packing showing hydrogen-bonding patterns with graph-set notations R32(9), R32(9) and R22(12), respectively. Dotted lines denote hydrogen bonds. H atoms non-involved in hydrogen-bonding omitted for clarity. [Symmetry codes: (i) ...

Crystal data

(C3H5N2)[Co(C4H5NO4)2]F(000) = 800
Mr = 390.20Dx = 1.716 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 2958 reflections
a = 16.889 (3) Åθ = 2.4–27.0°
b = 5.2906 (10) ŵ = 1.19 mm1
c = 16.901 (3) ÅT = 298 K
V = 1510.2 (5) Å3Block, red
Z = 40.20 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer1495 independent reflections
Radiation source: fine-focus sealed tube1299 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −19→20
Tmin = 0.783, Tmax = 0.797k = −6→4
6218 measured reflectionsl = −18→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0405P)2 + 0.6086P] where P = (Fo2 + 2Fc2)/3
1495 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00001.00000.00000.02108 (14)
O1−0.06498 (8)1.0888 (2)0.08656 (8)0.0305 (3)
O2−0.10143 (10)0.9556 (3)0.20572 (10)0.0502 (5)
O30.07296 (7)1.2495 (2)0.03073 (9)0.0306 (3)
O40.17666 (11)1.3151 (3)0.10704 (14)0.0775 (7)
N10.05329 (8)0.7739 (3)0.07205 (9)0.0240 (3)
H10.06440.64400.05210.029*
C1−0.06105 (12)0.9354 (4)0.14545 (12)0.0319 (4)
C2−0.00355 (11)0.7182 (4)0.13637 (12)0.0315 (5)
H2A0.02490.69260.18560.038*
H2B−0.03240.56440.12420.038*
C30.12727 (11)0.8972 (4)0.09931 (13)0.0327 (4)
H3A0.17240.81610.07440.039*
H3B0.13240.87640.15610.039*
C40.12754 (12)1.1751 (4)0.07933 (13)0.0369 (5)
N20.20741 (11)0.3528 (4)0.31139 (13)0.0526 (5)
H20.17490.23890.29520.063*
C50.25000.50000.2661 (2)0.0461 (9)
H50.25000.50000.21100.055*
C60.22287 (19)0.4090 (8)0.38741 (18)0.0811 (11)
H60.19990.33460.43170.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0249 (2)0.0181 (2)0.0202 (2)0.00274 (13)−0.00159 (13)−0.00175 (12)
O10.0359 (7)0.0297 (7)0.0259 (7)0.0101 (6)0.0047 (6)−0.0001 (6)
O20.0550 (10)0.0629 (11)0.0325 (9)0.0263 (8)0.0165 (8)0.0112 (8)
O30.0323 (7)0.0210 (6)0.0385 (8)−0.0005 (5)−0.0086 (6)−0.0013 (6)
O40.0655 (12)0.0340 (9)0.1330 (19)−0.0079 (9)−0.0602 (12)−0.0013 (10)
N10.0288 (8)0.0187 (7)0.0246 (8)0.0051 (6)−0.0019 (6)−0.0030 (6)
C10.0334 (10)0.0351 (10)0.0271 (11)0.0056 (9)0.0021 (9)0.0002 (8)
C20.0376 (11)0.0297 (10)0.0273 (11)0.0068 (8)0.0025 (8)0.0064 (8)
C30.0301 (10)0.0306 (10)0.0374 (11)0.0032 (8)−0.0084 (9)−0.0001 (9)
C40.0345 (10)0.0269 (10)0.0492 (13)0.0013 (8)−0.0115 (9)−0.0061 (9)
N20.0418 (11)0.0547 (13)0.0613 (14)−0.0206 (10)−0.0043 (10)−0.0035 (10)
C50.0403 (19)0.057 (2)0.041 (2)−0.0004 (15)0.0000.000
C60.074 (2)0.122 (3)0.0467 (18)−0.048 (2)0.0007 (15)0.0132 (18)

Geometric parameters (Å, °)

Co1—O3i1.8790 (12)C1—C21.512 (3)
Co1—O31.8790 (12)C2—H2A0.9700
Co1—O11.8882 (13)C2—H2B0.9700
Co1—O1i1.8882 (13)C3—C41.508 (3)
Co1—N1i1.9299 (14)C3—H3A0.9700
Co1—N11.9299 (14)C3—H3B0.9700
O1—C11.286 (2)N2—C51.308 (3)
O2—C11.230 (2)N2—C61.344 (4)
O3—C41.296 (2)N2—H20.8599
O4—C41.207 (3)C5—N2ii1.308 (3)
N1—C21.480 (2)C5—H50.9300
N1—C31.483 (2)C6—C6ii1.329 (6)
N1—H10.7879C6—H60.9300
O3i—Co1—O3180.00 (9)O1—C1—C2115.72 (17)
O3i—Co1—O190.44 (6)N1—C2—C1109.88 (16)
O3—Co1—O189.56 (6)N1—C2—H2A109.7
O3i—Co1—O1i89.56 (6)C1—C2—H2A109.7
O3—Co1—O1i90.44 (6)N1—C2—H2B109.7
O1—Co1—O1i180.0C1—C2—H2B109.7
O3i—Co1—N1i87.43 (6)H2A—C2—H2B108.2
O3—Co1—N1i92.57 (6)N1—C3—C4111.22 (15)
O1—Co1—N1i93.65 (6)N1—C3—H3A109.4
O1i—Co1—N1i86.35 (6)C4—C3—H3A109.4
O3i—Co1—N192.57 (6)N1—C3—H3B109.4
O3—Co1—N187.43 (6)C4—C3—H3B109.4
O1—Co1—N186.35 (6)H3A—C3—H3B108.0
O1i—Co1—N193.65 (6)O4—C4—O3123.3 (2)
N1i—Co1—N1180.00 (7)O4—C4—C3120.91 (19)
C1—O1—Co1114.38 (12)O3—C4—C3115.83 (16)
C4—O3—Co1115.36 (12)C5—N2—C6108.8 (2)
C2—N1—C3113.95 (15)C5—N2—H2125.6
C2—N1—Co1106.52 (11)C6—N2—H2125.6
C3—N1—Co1108.42 (11)N2ii—C5—N2108.3 (3)
C2—N1—H1107.2N2ii—C5—H5125.9
C3—N1—H1108.4N2—C5—H5125.9
Co1—N1—H1112.5C6ii—C6—N2107.09 (15)
O2—C1—O1123.87 (19)C6ii—C6—H6126.5
O2—C1—C2120.40 (18)N2—C6—H6126.5
O3i—Co1—O1—C177.41 (15)O1i—Co1—N1—C380.29 (12)
O3—Co1—O1—C1−102.59 (15)Co1—O1—C1—O2−176.80 (17)
N1i—Co1—O1—C1164.87 (14)Co1—O1—C1—C22.0 (2)
N1—Co1—O1—C1−15.13 (14)C3—N1—C2—C192.47 (19)
O1—Co1—O3—C490.08 (15)Co1—N1—C2—C1−27.03 (19)
O1i—Co1—O3—C4−89.92 (15)O2—C1—C2—N1−163.64 (19)
N1i—Co1—O3—C4−176.29 (15)O1—C1—C2—N117.5 (3)
N1—Co1—O3—C43.71 (15)C2—N1—C3—C4−104.50 (19)
O3i—Co1—N1—C2−66.96 (12)Co1—N1—C3—C413.92 (19)
O3—Co1—N1—C2113.04 (12)Co1—O3—C4—O4−176.8 (2)
O1—Co1—N1—C223.32 (12)Co1—O3—C4—C33.9 (2)
O1i—Co1—N1—C2−156.68 (12)N1—C3—C4—O4168.6 (2)
O3i—Co1—N1—C3170.01 (12)N1—C3—C4—O3−12.2 (3)
O3—Co1—N1—C3−9.99 (12)C6—N2—C5—N2ii0.4 (2)
O1—Co1—N1—C3−99.71 (12)C5—N2—C6—C6ii−1.2 (5)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, −y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3iii0.792.122.880 (2)161
N2—H2···O2iv0.861.952.775 (3)162
C3—H3B···O2v0.972.433.338 (3)156
C5—H5···O4iii0.932.363.117 (4)138
C5—H5···O4vi0.932.363.117 (4)138
C1—O2···Cg1vii1.230 (2)3.54 (1)3.953 (2).

Symmetry codes: (iii) x, y−1, z; (iv) −x, y−1, −z+1/2; (v) −x, y, −z+1/2; (vi) −x+1/2, −y+2, z; (vii) −x−1, y+1, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2551).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chattopadhyay, S. K., Mak, T. C. W., Luo, B., Thompson, L. K., Rana, A. & Ghosh, S. (1995). Polyhedron, 14, 3661–3667.
  • Gao, X.-L., Lu, L.-P. & Zhu, M.-L. (2009). Acta Cryst. C65, o123–o127. [PubMed]
  • Hsu, B. & Schlemper, E. O. (1980). Acta Cryst. B36, 3017–3023.
  • Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol 7, 336–348.
  • Rissanen, K. & Pursiainen, J. (2000). New J. Chem.24, 47–52.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography