PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m557.
Published online 2009 April 22. doi:  10.1107/S160053680901438X
PMCID: PMC2977604

Aqua­(dicyanamido){μ-6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II)sodium

Abstract

The mol­ecule of the title compound, [NaNi(C18H18N2O4)(C2N3)(H2O)], is approximately planar, with a maximum deviation from the mol­ecular plane of 0.770 (5) Å. The coordination environment of the Ni2+ ion is distorted square-planar and it is N2O2 coordinated by the 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate Schiff base ligand. The Na+ atom is chelated by the four O atoms of the Schiff base ligand, a water ligand and a dicyanamide anion. The structure displays inter­molecular O—H(...)N hydrogen bonding.

Related literature

For chemical background, see: Ohba & Okawa (2000 [triangle]). For related structures, see: Correia et al. (2005 [triangle]); Costes et al.(2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m557-scheme1.jpg

Experimental

Crystal data

  • [NaNi(C18H18N2O4)(C2N3)(H2O)]
  • M r = 492.11
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m557-efi1.jpg
  • a = 7.4654 (14) Å
  • b = 22.745 (4) Å
  • c = 13.177 (3) Å
  • β = 101.282 (4)°
  • V = 2194.2 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 293 K
  • 0.14 × 0.13 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.879, T max = 0.903
  • 10817 measured reflections
  • 3864 independent reflections
  • 2815 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.099
  • S = 1.02
  • 3864 reflections
  • 291 parameters
  • 54 restraints
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901438X/hg2500sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901438X/hg2500Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation (grant No. Y4080395).

supplementary crystallographic information

Comment

The dicyanamide ligand N(CN)2, has attracted continuous attention in the past four years for the buildup of interesting extended architectures. Its versatile coordination behavior and its ability to organize solids into polymeric structures with a rich diversity of magnetic properties have attracted interest toward this research area (Ohba et al., 2000). N,N-disalicylideneethylenediamine type Schiff bases ligands present versatile steric, electronic and lipophilic properties (Correia et al. 2005). We report here the synthesis and crystal structure of the title compound. The molecular structure is shown in Fig. 1. The values of the geometric parameters in this compound are normal (Costes et al., 2004). NiII and NaI are connected via two bridging O atoms of the ligand. The six-coordinate Na atom adopts a distorted octahedral coordination geometry while the four-coordinate Ni gives a planar coordination geometry.

Experimental

A mixture of 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol) and nickel chloride (1 mmol) in methanol (15 ml) was stirred for 30 min and sodium dicyanamide (1 mmol) was added, stirred for another 15 min and then filtered. The resulting clear orange solution was vapor at room temperature for 7 d, after which large orange block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H distances in the range of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[NaNi(C18H18N2O4)(C2N3)(H2O)]F(000) = 1016
Mr = 492.11Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3120 reflections
a = 7.4654 (14) Åθ = 2.5–24.6°
b = 22.745 (4) ŵ = 0.95 mm1
c = 13.177 (3) ÅT = 293 K
β = 101.282 (4)°Block, orange
V = 2194.2 (8) Å30.14 × 0.13 × 0.11 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3864 independent reflections
Radiation source: fine-focus sealed tube2815 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −8→8
Tmin = 0.879, Tmax = 0.903k = −26→27
10817 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0455P)2 + 0.4335P] where P = (Fo2 + 2Fc2)/3
3864 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.33 e Å3
54 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.24893 (5)0.506776 (16)0.06029 (3)0.04684 (15)
Na10.36614 (16)0.38280 (5)0.20328 (9)0.0527 (3)
O10.2723 (3)0.48215 (8)0.19509 (16)0.0545 (5)
O20.3315 (3)0.43203 (8)0.03988 (15)0.0497 (5)
O30.3154 (4)0.42650 (10)0.36882 (17)0.0732 (7)
O40.4284 (3)0.32315 (9)0.04958 (19)0.0655 (6)
O50.1624 (3)0.30933 (10)0.21624 (17)0.0731 (7)
H5A0.10050.30320.26010.088*
H5B0.13050.28710.16650.088*
N10.1665 (3)0.58076 (11)0.0844 (2)0.0584 (7)
N20.2232 (3)0.52892 (13)−0.0760 (2)0.0589 (7)
N30.9189 (4)0.28821 (17)0.3648 (3)0.0917 (9)
N41.0360 (5)0.26666 (15)0.5450 (3)0.0888 (10)
N50.6431 (5)0.34246 (17)0.2954 (3)0.0934 (9)
C10.3049 (4)0.43665 (18)−0.1445 (3)0.0652 (10)
C20.3415 (4)0.40716 (15)−0.0485 (2)0.0511 (8)
C30.3908 (4)0.34689 (15)−0.0474 (3)0.0601 (9)
C40.4007 (6)0.3183 (2)−0.1377 (4)0.0885 (13)
H40.43210.2787−0.13610.106*
C50.3642 (7)0.3480 (3)−0.2315 (4)0.1134 (17)
H50.37080.3281−0.29230.136*
C60.3189 (6)0.4060 (3)−0.2353 (3)0.0998 (15)
H60.29690.4256−0.29850.120*
C70.2509 (5)0.49684 (19)−0.1515 (3)0.0694 (11)
H70.23420.5144−0.21640.083*
C80.4977 (6)0.26446 (15)0.0610 (3)0.0903 (13)
H8A0.40440.23750.02920.135*
H8B0.53370.25530.13320.135*
H8C0.60140.26110.02830.135*
C90.1804 (5)0.57147 (14)0.2674 (3)0.0631 (9)
C100.2389 (4)0.51231 (13)0.2744 (3)0.0524 (8)
C110.2599 (5)0.48361 (15)0.3708 (3)0.0615 (9)
C120.2255 (6)0.5127 (2)0.4565 (3)0.0842 (12)
H120.23980.49330.51960.101*
C130.1694 (7)0.5711 (2)0.4492 (4)0.0982 (14)
H130.14690.59050.50760.118*
C140.1473 (6)0.59969 (18)0.3580 (4)0.0854 (12)
H140.10950.63870.35430.102*
C150.3392 (6)0.39343 (19)0.4619 (3)0.0919 (13)
H15A0.42530.41300.51470.138*
H15B0.38410.35500.45020.138*
H15C0.22410.39000.48360.138*
C170.1111 (6)0.61685 (18)−0.0096 (4)0.0889 (13)
H16A−0.02090.6203−0.02570.107*
H16B0.16190.65600.00280.107*
C180.1737 (7)0.59090 (18)−0.0957 (4)0.0952 (14)
H17A0.27910.6124−0.10860.114*
H17B0.07820.5938−0.15710.114*
C190.9741 (5)0.27798 (17)0.4624 (3)0.0681 (9)
C200.7695 (6)0.31745 (18)0.3323 (3)0.0762 (9)
C160.1480 (5)0.60153 (15)0.1717 (3)0.0691 (10)
H200.10910.64040.17240.083*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0435 (2)0.0440 (2)0.0519 (3)−0.00269 (17)0.00649 (17)0.00924 (18)
Na10.0576 (7)0.0475 (7)0.0521 (7)0.0048 (6)0.0090 (6)0.0046 (5)
O10.0737 (15)0.0407 (11)0.0502 (13)0.0055 (10)0.0146 (11)−0.0009 (10)
O20.0576 (13)0.0493 (12)0.0426 (12)0.0010 (10)0.0109 (10)0.0014 (9)
O30.115 (2)0.0601 (15)0.0482 (14)0.0084 (14)0.0235 (13)0.0051 (11)
O40.0800 (16)0.0474 (13)0.0746 (17)−0.0003 (11)0.0284 (13)−0.0082 (12)
O50.0885 (17)0.0713 (15)0.0650 (16)−0.0195 (13)0.0290 (13)−0.0105 (12)
N10.0475 (16)0.0432 (15)0.081 (2)−0.0028 (12)0.0046 (14)0.0120 (15)
N20.0461 (16)0.0653 (18)0.0625 (19)−0.0061 (13)0.0036 (14)0.0215 (15)
N30.0765 (19)0.131 (2)0.0687 (18)0.0310 (17)0.0164 (15)0.0124 (18)
N40.099 (2)0.085 (2)0.076 (2)0.0171 (19)0.0042 (18)0.0172 (18)
N50.0782 (19)0.125 (2)0.0725 (19)0.0268 (18)0.0037 (16)0.0108 (17)
C10.046 (2)0.100 (3)0.049 (2)−0.0013 (19)0.0089 (15)−0.001 (2)
C20.0405 (17)0.070 (2)0.0432 (19)−0.0088 (16)0.0099 (14)−0.0071 (16)
C30.056 (2)0.067 (2)0.060 (2)−0.0097 (17)0.0196 (17)−0.0206 (19)
C40.088 (3)0.097 (3)0.083 (3)−0.003 (2)0.023 (2)−0.034 (3)
C50.119 (4)0.159 (5)0.066 (3)0.015 (4)0.027 (3)−0.038 (3)
C60.097 (3)0.160 (5)0.044 (2)0.008 (3)0.018 (2)−0.009 (3)
C70.051 (2)0.108 (3)0.048 (2)−0.007 (2)0.0077 (16)0.021 (2)
C80.111 (3)0.045 (2)0.124 (4)0.000 (2)0.045 (3)−0.009 (2)
C90.057 (2)0.052 (2)0.079 (3)0.0015 (16)0.0093 (18)−0.0180 (19)
C100.0513 (19)0.0493 (18)0.057 (2)−0.0025 (15)0.0122 (15)−0.0081 (16)
C110.066 (2)0.065 (2)0.056 (2)−0.0009 (18)0.0165 (17)−0.0114 (18)
C120.097 (3)0.100 (3)0.057 (3)0.000 (3)0.019 (2)−0.018 (2)
C130.111 (4)0.099 (4)0.088 (4)0.006 (3)0.027 (3)−0.043 (3)
C140.083 (3)0.071 (3)0.102 (3)0.015 (2)0.016 (2)−0.033 (3)
C150.124 (4)0.096 (3)0.058 (2)0.001 (3)0.025 (2)0.022 (2)
C170.079 (3)0.075 (3)0.113 (4)0.017 (2)0.018 (3)0.047 (3)
C180.108 (3)0.080 (3)0.094 (3)0.005 (3)0.011 (3)0.041 (3)
C190.0625 (19)0.080 (2)0.0614 (18)0.0125 (16)0.0121 (16)0.0107 (18)
C200.068 (2)0.105 (2)0.0550 (18)0.0168 (19)0.0113 (16)0.0098 (18)
C160.061 (2)0.0391 (18)0.102 (3)0.0030 (16)0.004 (2)−0.006 (2)

Geometric parameters (Å, °)

Ni1—O11.838 (2)C3—C41.371 (5)
Ni1—N21.839 (3)C4—C51.387 (6)
Ni1—N11.840 (3)C4—H40.9300
Ni1—O21.8457 (19)C5—C61.361 (7)
Na1—O52.288 (2)C5—H50.9300
Na1—O12.362 (2)C6—H60.9300
Na1—N52.368 (4)C7—H70.9300
Na1—O22.395 (2)C8—H8A0.9600
Na1—O32.492 (3)C8—H8B0.9600
Na1—O42.555 (2)C8—H8C0.9600
O1—C101.314 (4)C9—C101.412 (4)
O2—C21.310 (3)C9—C161.413 (5)
O3—C111.365 (4)C9—C141.419 (5)
O3—C151.420 (4)C10—C111.410 (5)
O4—C31.365 (4)C11—C121.375 (5)
O4—C81.429 (4)C12—C131.389 (6)
O5—H5A0.8200C12—H120.9300
O5—H5B0.8246C13—C141.349 (6)
N1—C161.276 (4)C13—H130.9300
N1—C171.476 (4)C14—H140.9300
N2—C71.282 (4)C15—H15A0.9600
N2—C181.468 (5)C15—H15B0.9600
N3—C191.292 (5)C15—H15C0.9600
N3—C201.297 (5)C17—C181.436 (6)
N4—C191.127 (4)C17—H16A0.9700
N5—C201.127 (4)C17—H16B0.9700
C1—C61.405 (5)C18—H17A0.9700
C1—C21.411 (5)C18—H17B0.9700
C1—C71.425 (5)C16—H200.9300
C2—C31.419 (5)
O1—Ni1—N2178.09 (11)C6—C5—C4120.6 (4)
O1—Ni1—N194.79 (11)C6—C5—H5119.7
N2—Ni1—N186.76 (14)C4—C5—H5119.7
O1—Ni1—O283.62 (9)C5—C6—C1120.5 (4)
N2—Ni1—O294.82 (11)C5—C6—H6119.7
N1—Ni1—O2178.41 (11)C1—C6—H6119.7
O5—Na1—O1120.42 (9)N2—C7—C1125.7 (3)
O5—Na1—N5101.85 (12)N2—C7—H7117.1
O1—Na1—N5127.99 (12)C1—C7—H7117.1
O5—Na1—O2116.86 (9)O4—C8—H8A109.5
O1—Na1—O262.15 (7)O4—C8—H8B109.5
N5—Na1—O2124.88 (11)H8A—C8—H8B109.5
O5—Na1—O390.51 (9)O4—C8—H8C109.5
O1—Na1—O364.15 (8)H8A—C8—H8C109.5
N5—Na1—O388.43 (11)H8B—C8—H8C109.5
O2—Na1—O3126.30 (8)C10—C9—C16121.1 (3)
O5—Na1—O484.15 (8)C10—C9—C14118.6 (4)
O1—Na1—O4124.77 (9)C16—C9—C14120.2 (4)
N5—Na1—O485.68 (11)O1—C10—C11118.0 (3)
O2—Na1—O462.63 (7)O1—C10—C9123.4 (3)
O3—Na1—O4171.07 (9)C11—C10—C9118.6 (3)
C10—O1—Ni1127.8 (2)O3—C11—C12125.5 (4)
C10—O1—Na1124.3 (2)O3—C11—C10113.8 (3)
Ni1—O1—Na1107.87 (9)C12—C11—C10120.7 (4)
C2—O2—Ni1127.3 (2)C11—C12—C13120.4 (4)
C2—O2—Na1125.61 (19)C11—C12—H12119.8
Ni1—O2—Na1106.26 (9)C13—C12—H12119.8
C11—O3—C15118.3 (3)C14—C13—C12120.3 (4)
C11—O3—Na1119.68 (19)C14—C13—H13119.8
C15—O3—Na1122.0 (2)C12—C13—H13119.8
C3—O4—C8118.2 (3)C13—C14—C9121.3 (4)
C3—O4—Na1119.73 (19)C13—C14—H14119.3
C8—O4—Na1122.1 (2)C9—C14—H14119.3
Na1—O5—H5A130.6O3—C15—H15A109.5
Na1—O5—H5B118.8O3—C15—H15B109.5
H5A—O5—H5B110.0H15A—C15—H15B109.5
C16—N1—C17119.2 (3)O3—C15—H15C109.5
C16—N1—Ni1126.4 (2)H15A—C15—H15C109.5
C17—N1—Ni1114.3 (3)H15B—C15—H15C109.5
C7—N2—C18118.9 (3)C18—C17—N1110.7 (3)
C7—N2—Ni1126.8 (3)C18—C17—H16A109.5
C18—N2—Ni1114.2 (3)N1—C17—H16A109.5
C19—N3—C20120.5 (3)C18—C17—H16B109.5
C20—N5—Na1171.8 (4)N1—C17—H16B109.5
C6—C1—C2119.6 (4)H16A—C17—H16B108.1
C6—C1—C7119.2 (4)C17—C18—N2111.4 (3)
C2—C1—C7121.1 (3)C17—C18—H17A109.4
O2—C2—C1123.9 (3)N2—C18—H17A109.4
O2—C2—C3117.9 (3)C17—C18—H17B109.4
C1—C2—C3118.2 (3)N2—C18—H17B109.4
O4—C3—C4126.1 (4)H17A—C18—H17B108.0
O4—C3—C2113.4 (3)N4—C19—N3173.6 (4)
C4—C3—C2120.4 (4)N5—C20—N3173.8 (4)
C3—C4—C5120.5 (4)N1—C16—C9126.5 (3)
C3—C4—H4119.7N1—C16—H20116.7
C5—C4—H4119.7C9—C16—H20116.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···N3i0.822.142.960 (4)175
O5—H5B···N4ii0.822.032.852 (4)177

Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2500).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Correia, I., Duarte, M. T., Piedade, M. F. M., Jackush, T., Kiss, T., Castro, M. M., Geraldes, C. A., Carlos, F. G. C. & Avecilla, F. (2005). Eur. J. Inorg. Chem. pp. 732–744.
  • Costes, J.-P., Novitchi, G., Shova, S., Dahan, F., Donnadieu, B. & Tuchagues, J.-P. (2004). Inorg. Chem.43, 7792–7799. [PubMed]
  • Ohba, M. & Okawa, H. (2000). Coord. Chem. Rev.198, 313–328.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography