PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m554.
Published online 2009 April 22. doi:  10.1107/S1600536809014214
PMCID: PMC2977601

Bis(μ-2-methyl­quinolin-8-olato)-κ3 N,O:O3 O:N,O-bis­[(acetato-κO)(methanol-κO)zinc(II)]

Abstract

The reaction of zinc acetate and 2-methyl-8-hydroxy­quinoline in methanol yielded the centrosymmetric dinuclear title compound, [Zn2(C10H8NO)2(CH3CO2)2(CH3OH)2], which has the Zn atom within a distorted NO4 trigonal–bipyramidal coordination geometry. Methanol–acetate O—H(...)O hydrogen bonds link the dinculear units into a linear supra­molecular chain extending parallel to [100].

Related literature

Unlike 8-hydroxy­quinoline, which yields a large number of metal derivatives, 2-methyl-8-hydroxy­quinoline forms only a small number of metal chelates. Besides a related chloride salt (Sattarzadeh et al., 2009 [triangle]), there is only one crystal structure report of another zinc derivative; for aqua­bis(2-methyl­quinolin-8-ato)zinc, see: da Silva et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m554-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C10H8NO)2(C2H3O2)2(CH4O)2]
  • M r = 629.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m554-efi1.jpg
  • a = 6.9496 (1) Å
  • b = 9.6262 (2) Å
  • c = 9.8232 (2) Å
  • α = 75.241 (1)°
  • β = 89.688 (1)°
  • γ = 86.596 (1)°
  • V = 634.32 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.95 mm−1
  • T = 100 K
  • 0.38 × 0.28 × 0.18 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.525, T max = 0.721
  • 5601 measured reflections
  • 2855 independent reflections
  • 2534 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.230
  • S = 1.13
  • 2855 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 3.72 e Å−3
  • Δρmin = −1.85 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014214/tk2424sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014214/tk2424Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Zinc acetate (0.17 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after several days. Although well formed, all specimens had a slightly blemished interior.

Refinement

The crystal used in the study was a multiply twinned crystal. The diffraction intensities were separated with the RLATT routine of the data collection software, and that component that diffracted to the highest 2θ limit was selected for integration. Although the specimen diffracted strongly, with a high proportion of 'observeds', there was serious overlapping between the main component and the minor components, particularly at low angles.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å; O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C, O).

The final difference Fourier map had a large peak/deep hole in the vicinity of the Zn1 atom. These could not be reduced even with the 2θ maximum was lowered to 50 °.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of dinuclear [Zn(C10H8NO)(CH3OH)(CH3CO2)]2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. The unlabelled atoms are related by a centre of inversion.

Crystal data

[Zn2(C10H8NO)2(C2H3O2)2(CH4O)2]Z = 1
Mr = 629.26F(000) = 324
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9496 (1) ÅCell parameters from 3551 reflections
b = 9.6262 (2) Åθ = 2.2–28.3°
c = 9.8232 (2) ŵ = 1.95 mm1
α = 75.241 (1)°T = 100 K
β = 89.688 (1)°Block, yellow
γ = 86.596 (1)°0.38 × 0.28 × 0.18 mm
V = 634.32 (2) Å3

Data collection

Bruker SMART APEX diffractometer2855 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
graphiteRint = 0.042
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.525, Tmax = 0.721k = −12→12
5601 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.1574P)2 + 1.7954P] where P = (Fo2 + 2Fc2)/3
2855 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 3.72 e Å3
0 restraintsΔρmin = −1.85 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.57254 (8)0.63131 (6)0.87572 (5)0.0148 (3)
O10.5349 (5)0.4205 (4)0.9193 (4)0.0174 (8)
O20.4331 (6)0.8211 (4)0.8160 (4)0.0201 (8)
O30.1619 (6)0.7137 (5)0.8017 (4)0.0236 (9)
O40.8356 (6)0.6830 (5)0.9340 (4)0.0233 (9)
H40.90890.72310.86950.028*
N10.6717 (6)0.5859 (5)0.6847 (5)0.0165 (9)
C10.5872 (7)0.3551 (6)0.8200 (5)0.0169 (10)
C20.5764 (8)0.2097 (6)0.8320 (6)0.0184 (10)
H20.53130.14930.91680.022*
C30.6315 (9)0.1497 (6)0.7196 (6)0.0229 (11)
H30.62380.04920.73030.028*
C40.6955 (8)0.2334 (6)0.5956 (6)0.0232 (11)
H4A0.73010.19120.52070.028*
C50.7104 (8)0.3827 (6)0.5786 (6)0.0191 (10)
C60.6596 (7)0.4431 (6)0.6917 (5)0.0150 (9)
C70.7707 (8)0.4776 (6)0.4547 (6)0.0196 (11)
H70.80290.44270.37480.023*
C80.7834 (8)0.6205 (6)0.4485 (5)0.0208 (11)
H80.82480.68460.36460.025*
C90.7341 (8)0.6730 (6)0.5687 (5)0.0178 (10)
C100.7542 (9)0.8281 (6)0.5643 (6)0.0227 (11)
H10A0.73360.84270.65860.034*
H10B0.65820.88790.49880.034*
H10C0.88380.85520.53260.034*
C110.2496 (8)0.8207 (6)0.8104 (5)0.0179 (10)
C120.1384 (9)0.9585 (7)0.8161 (7)0.0297 (13)
H12A0.22441.03810.79390.045*
H12B0.08640.94880.91080.045*
H12C0.03220.97800.74740.045*
C130.9045 (8)0.6565 (7)1.0750 (6)0.0233 (11)
H13A1.04260.62851.07860.035*
H13B0.83500.57871.13560.035*
H13C0.88320.74411.10790.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0190 (4)0.0192 (4)0.0083 (4)−0.0030 (2)0.0016 (2)−0.0068 (2)
O10.027 (2)0.0212 (18)0.0063 (16)−0.0035 (15)0.0078 (14)−0.0071 (14)
O20.025 (2)0.0206 (19)0.0146 (17)−0.0033 (15)0.0021 (15)−0.0033 (14)
O30.023 (2)0.032 (2)0.020 (2)−0.0040 (16)0.0045 (16)−0.0146 (17)
O40.0186 (19)0.041 (2)0.0123 (18)−0.0090 (16)0.0026 (14)−0.0094 (16)
N10.018 (2)0.024 (2)0.0098 (19)−0.0017 (16)−0.0004 (15)−0.0079 (16)
C10.018 (2)0.024 (3)0.012 (2)−0.0030 (19)0.0016 (18)−0.0084 (19)
C20.023 (3)0.019 (2)0.015 (2)−0.0026 (19)0.0028 (19)−0.0058 (19)
C30.030 (3)0.021 (3)0.021 (3)0.001 (2)−0.002 (2)−0.012 (2)
C40.025 (3)0.029 (3)0.020 (3)−0.001 (2)0.000 (2)−0.015 (2)
C50.017 (2)0.027 (3)0.016 (2)0.000 (2)−0.0011 (19)−0.012 (2)
C60.017 (2)0.021 (2)0.008 (2)0.0006 (18)0.0004 (17)−0.0055 (18)
C70.018 (2)0.032 (3)0.012 (2)0.002 (2)0.0005 (19)−0.012 (2)
C80.020 (3)0.033 (3)0.010 (2)−0.001 (2)−0.0003 (19)−0.008 (2)
C90.018 (2)0.027 (3)0.009 (2)−0.003 (2)0.0009 (18)−0.0058 (19)
C100.035 (3)0.023 (3)0.012 (2)−0.006 (2)0.003 (2)−0.006 (2)
C110.020 (2)0.024 (3)0.010 (2)0.0004 (19)0.0012 (18)−0.0057 (19)
C120.027 (3)0.027 (3)0.034 (3)0.002 (2)0.002 (2)−0.006 (2)
C130.023 (3)0.035 (3)0.013 (2)−0.004 (2)0.001 (2)−0.009 (2)

Geometric parameters (Å, °)

Zn1—O11.997 (4)C4—C51.414 (8)
Zn1—O21.968 (4)C4—H4A0.9500
Zn1—O1i2.092 (3)C5—C71.402 (8)
Zn1—O42.045 (4)C5—C61.413 (7)
Zn1—N12.134 (4)C7—C81.369 (8)
O1—C11.328 (6)C7—H70.9500
O1—Zn1i2.092 (3)C8—C91.431 (7)
O2—C111.277 (7)C8—H80.9500
O3—C111.250 (7)C9—C101.497 (7)
O4—C131.423 (6)C10—H10A0.9800
O4—H40.8400C10—H10B0.9800
N1—C91.319 (7)C10—H10C0.9800
N1—C61.366 (7)C11—C121.508 (8)
C1—C21.381 (7)C12—H12A0.9800
C1—C61.435 (7)C12—H12B0.9800
C2—C31.412 (7)C12—H12C0.9800
C2—H20.9500C13—H13A0.9800
C3—C41.366 (9)C13—H13B0.9800
C3—H30.9500C13—H13C0.9800
O1—Zn1—O1i75.2 (2)C6—C5—C4119.1 (5)
O1—Zn1—O2142.5 (2)N1—C6—C5122.8 (5)
O1—Zn1—O4114.7 (2)N1—C6—C1116.8 (4)
O1—Zn1—N179.8 (2)C5—C6—C1120.4 (5)
O1i—Zn1—O295.8 (2)C8—C7—C5120.2 (5)
O1i—Zn1—O494.5 (2)C8—C7—H7119.9
O1i—Zn1—N1155.0 (2)C5—C7—H7119.9
O2—Zn1—O4102.1 (2)C7—C8—C9119.9 (5)
O2—Zn1—N1104.7 (2)C7—C8—H8120.1
O4—Zn1—N195.0 (2)C9—C8—H8120.1
C1—O1—Zn1116.2 (3)N1—C9—C8120.7 (5)
C1—O1—Zn1i139.0 (3)N1—C9—C10119.2 (5)
Zn1—O1—Zn1i104.81 (16)C8—C9—C10120.1 (5)
C11—O2—Zn1116.0 (3)C9—C10—H10A109.5
C13—O4—Zn1125.3 (3)C9—C10—H10B109.5
C13—O4—H4117.3H10A—C10—H10B109.5
Zn1—O4—H4117.3C9—C10—H10C109.5
C9—N1—C6119.7 (4)H10A—C10—H10C109.5
C9—N1—Zn1130.0 (4)H10B—C10—H10C109.5
C6—N1—Zn1110.3 (3)O3—C11—O2123.5 (5)
O1—C1—C2124.6 (5)O3—C11—C12120.0 (5)
O1—C1—C6117.0 (5)O2—C11—C12116.5 (5)
C2—C1—C6118.4 (5)C11—C12—H12A109.5
C1—C2—C3120.8 (5)C11—C12—H12B109.5
C1—C2—H2119.6H12A—C12—H12B109.5
C3—C2—H2119.6C11—C12—H12C109.5
C4—C3—C2121.2 (5)H12A—C12—H12C109.5
C4—C3—H3119.4H12B—C12—H12C109.5
C2—C3—H3119.4O4—C13—H13A109.5
C3—C4—C5120.1 (5)O4—C13—H13B109.5
C3—C4—H4A119.9H13A—C13—H13B109.5
C5—C4—H4A119.9O4—C13—H13C109.5
C7—C5—C6116.7 (5)H13A—C13—H13C109.5
C7—C5—C4124.2 (5)H13B—C13—H13C109.5
O2—Zn1—O1—C1102.0 (4)C6—C1—C2—C3−1.3 (8)
O4—Zn1—O1—C1−89.7 (4)C1—C2—C3—C4−0.5 (9)
O1i—Zn1—O1—C1−177.9 (5)C2—C3—C4—C50.9 (9)
N1—Zn1—O1—C11.1 (4)C3—C4—C5—C7−178.6 (6)
O2—Zn1—O1—Zn1i−80.1 (3)C3—C4—C5—C60.5 (8)
O4—Zn1—O1—Zn1i88.17 (19)C9—N1—C6—C5−0.4 (8)
O1i—Zn1—O1—Zn1i0.0Zn1—N1—C6—C5178.2 (4)
N1—Zn1—O1—Zn1i179.0 (2)C9—N1—C6—C1−178.9 (5)
O1—Zn1—O2—C117.8 (5)Zn1—N1—C6—C1−0.3 (6)
O4—Zn1—O2—C11−161.4 (4)C7—C5—C6—N1−1.5 (8)
O1i—Zn1—O2—C11−65.4 (4)C4—C5—C6—N1179.3 (5)
N1—Zn1—O2—C11100.1 (4)C7—C5—C6—C1176.9 (5)
O2—Zn1—O4—C13107.2 (4)C4—C5—C6—C1−2.3 (8)
O1—Zn1—O4—C13−65.5 (5)O1—C1—C6—N11.2 (7)
O1i—Zn1—O4—C1310.3 (4)C2—C1—C6—N1−178.8 (5)
N1—Zn1—O4—C13−146.6 (4)O1—C1—C6—C5−177.3 (5)
O2—Zn1—N1—C936.2 (5)C2—C1—C6—C52.7 (8)
O1—Zn1—N1—C9178.0 (5)C6—C5—C7—C81.8 (8)
O4—Zn1—N1—C9−67.7 (5)C4—C5—C7—C8−179.1 (5)
O1i—Zn1—N1—C9−179.6 (4)C5—C7—C8—C9−0.3 (8)
O2—Zn1—N1—C6−142.2 (3)C6—N1—C9—C82.1 (8)
O1—Zn1—N1—C6−0.4 (3)Zn1—N1—C9—C8−176.2 (4)
O4—Zn1—N1—C6113.9 (3)C6—N1—C9—C10−177.6 (5)
O1i—Zn1—N1—C61.9 (6)Zn1—N1—C9—C104.1 (8)
Zn1—O1—C1—C2178.4 (4)C7—C8—C9—N1−1.8 (8)
Zn1i—O1—C1—C21.5 (9)C7—C8—C9—C10177.9 (5)
Zn1—O1—C1—C6−1.6 (6)Zn1—O2—C11—O3−20.5 (7)
Zn1i—O1—C1—C6−178.5 (4)Zn1—O2—C11—C12159.0 (4)
O1—C1—C2—C3178.7 (5)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O3ii0.841.882.602 (6)143

Symmetry codes: (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2424).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, L. E. da, Joussef, A. C., Rebelo, R. A., Foro, S. & Schmidt, B. (2007). Acta Cryst. E63, m129–m131.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography