PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m552.
Published online 2009 April 22. doi:  10.1107/S1600536809014263
PMCID: PMC2977599

Bis(2,2′-bipyrid­yl)-1κ2 N,N′;3κ2 N,N′-bis­(4-bromo-2-formyl­phenolato)-1κ2 O,O′;3κ2 O,O′-bis­[μ-2-(5-bromo-2-oxidobenzylidene­amino)­ethane­sul­fon­ato]-1:2κ3 O:N,O 2;2:3κ3 N,O 2:O-tricopper(II) monohydrate

Abstract

The title complex, [Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2O, lies on an inversion center located on the central Cu atom, which is four-coordinated in a square-planar geometry, whereas the outer Cu atoms related by symmetry are five-coordinated in a square-pyramidal geometry. The trinuclear mol­ecules, with an intramolecular Cu(...)Cu separation of 6.313 (3) Å, are linked to each other, forming a chain through O—H(...)O and O—H(...)Br hydrogen bonds involving the half-occupied water mol­ecule. Futhermore, weak C—H(...)O inter­actions link the chains to form a supra­molecular network.

Related literature

For general background on coordination polymers and open framework materials, see: Kim et al. (2003 [triangle]); Iglesias et al. (2003 [triangle]); Moulton & Zaworotko (2001 [triangle]). For background on 2,2′-bipyridyl and 5-bromo-2-hydroxy­benzaldehyde, see: Sun & Gao (2005 [triangle]); Murphy et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m552-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2O
  • M r = 1533.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m552-efi1.jpg
  • a = 10.031 (2) Å
  • b = 11.480 (2) Å
  • c = 12.913 (3) Å
  • α = 73.13 (3)°
  • β = 78.58 (3)°
  • γ = 75.24 (3)°
  • V = 1363.6 (6) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 4.24 mm−1
  • T = 293 K
  • 0.23 × 0.16 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.442, T max = 0.677
  • 12051 measured reflections
  • 4888 independent reflections
  • 1651 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.099
  • S = 0.76
  • 4888 reflections
  • 367 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014263/dn2446sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014263/dn2446Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges financial support by the Youth Foundation of Lishui University, China (No. QN05002).

supplementary crystallographic information

Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Kim et al., 2003; Iglesias et al., 2003; Moulton & Zaworotko, 2001). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metals ions and bridging building blocks as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. 2,2'-bipyridyl, 5-bromo-2-hydroxybenzaldehyde are excellent candidates for the construction of supramolecula complexes, since they not only have multiple coordination modes but also can form regular hydrogen bonds by functioning as both hydrogen-bond donor and acceptor (Sun & Gao, 2005; Murphy et al., 2004). 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic has a versatile binding ability, whose structure of complexes have not been reported to date. Recently, we obtained the title novel trinuclear copper complex (I) by the reaction of copper nitryl, 2,2'-bipyridyl, 5-bromo-2-hydroxybenzaldehyde and 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic in an aqueous solution, and its crystal is reported here.

The trinuclear complex lyies on a crystallographic inversion center located on the central Cu1 atom which is four-coordinated in a square planar geometry, whereas the other Cu2 atoms related by symmetry are five-coordinated in a square pyramidal geometry (Fig. 1). The compound forms trinuclear structure via the flexible 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic ligand, with a Cu···Cu separation of 6.313 (3) Å. These trinuclear units are linked to each other to form a chain through O-H···O and O-H···Br hydrogen bonds involving the water molecule (table 1, Fig. 2). Futhermore, weak C-H···O interactions link the chain to form a supramolecular network.

Experimental

A mixture of copper chloride(1 mmol), 5-bromo-2-hydroxybenzaldehyde (1 mmol), 2,2'-bipyridyl(1 mmol), 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic (1 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.82 (1)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atom.

Figures

Fig. 1.
The structure of the trinuclear complex with the atom labeling scheme, Displacement ellipsoids are shown at the 30% probability level. H atom and water molecule have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1]
Fig. 2.
Partial packing view showing the H bond interactions linking the trinuclear unit through the water molecule. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry codes: (ii) -x, -y+1, ...

Crystal data

[Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2OZ = 1
Mr = 1533.30F(000) = 759
Triclinic, P1Dx = 1.867 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.031 (2) ÅCell parameters from 2895 reflections
b = 11.480 (2) Åθ = 2.4–27.9°
c = 12.913 (3) ŵ = 4.24 mm1
α = 73.13 (3)°T = 293 K
β = 78.58 (3)°Block, colorless
γ = 75.24 (3)°0.23 × 0.16 × 0.10 mm
V = 1363.6 (6) Å3

Data collection

Bruker APEXII area-detector diffractometer4888 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
graphiteRint = 0.077
[var phi] and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −12→12
Tmin = 0.442, Tmax = 0.677k = −13→13
12051 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 0.76w = 1/[σ2(Fo2) + (0.0382P)2] where P = (Fo2 + 2Fc2)/3
4888 reflections(Δ/σ)max = 0.001
367 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.0567 (4)
Cu20.16643 (9)1.01005 (8)0.23932 (7)0.0545 (3)
Br10.56422 (9)0.78255 (8)0.70805 (6)0.0780 (3)
Br20.20594 (10)0.35954 (9)1.08489 (7)0.0900 (4)
S10.0325 (2)0.7374 (2)0.34555 (18)0.0589 (6)
N10.2317 (7)0.9972 (6)0.0858 (5)0.0490 (16)
N20.0114 (6)1.1303 (5)0.1664 (6)0.0499 (17)
N30.3009 (6)0.5065 (5)0.5526 (5)0.0539 (18)
O10.0575 (6)0.6616 (5)0.2703 (4)0.100 (2)
O2−0.0917 (5)0.7223 (5)0.4217 (4)0.0901 (18)
O30.0319 (5)0.8680 (4)0.2953 (4)0.0853 (18)
O40.5413 (5)0.4760 (5)0.6422 (4)0.0695 (16)
O50.1069 (5)1.0634 (4)0.3756 (4)0.0677 (16)
O60.3395 (4)0.9154 (4)0.2812 (3)0.0529 (13)
C1−0.0981 (10)1.1957 (8)0.2182 (6)0.066 (2)
H1−0.10401.18610.29290.079*
C2−0.2050 (8)1.2792 (7)0.1604 (8)0.070 (2)
H2−0.28221.32300.19650.084*
C3−0.1923 (10)1.2938 (8)0.0521 (8)0.078 (3)
H3−0.26161.34880.01310.094*
C4−0.0822 (9)1.2309 (8)−0.0011 (7)0.066 (3)
H4−0.07501.2429−0.07620.080*
C50.0231 (9)1.1459 (7)0.0577 (8)0.056 (2)
C60.1483 (9)1.0735 (7)0.0102 (7)0.054 (2)
C70.1860 (10)1.0791 (7)−0.0994 (7)0.070 (3)
H70.12941.1312−0.15070.083*
C80.3088 (11)1.0058 (9)−0.1304 (7)0.074 (3)
H80.33631.0089−0.20410.089*
C90.3919 (9)0.9284 (7)−0.0566 (8)0.074 (3)
H90.47500.8777−0.07810.089*
C100.3483 (9)0.9282 (7)0.0509 (7)0.059 (2)
H100.40470.87600.10230.071*
C110.3250 (10)0.4410 (6)0.7469 (6)0.059 (2)
C120.2482 (8)0.4121 (6)0.8509 (6)0.059 (2)
H120.15540.40790.85780.071*
C130.3108 (9)0.3899 (6)0.9436 (5)0.058 (2)
C140.4491 (9)0.3968 (7)0.9313 (7)0.069 (2)
H140.49030.38120.99390.083*
C150.5277 (8)0.4253 (6)0.8325 (7)0.061 (2)
H150.62010.42960.82760.073*
C160.4641 (9)0.4487 (7)0.7348 (7)0.056 (2)
C170.2491 (7)0.4750 (5)0.6544 (6)0.048 (2)
H170.15470.47410.66940.057*
C180.1956 (7)0.5436 (6)0.4753 (5)0.056 (2)
H18A0.10900.52120.51430.067*
H18B0.22840.49910.41860.067*
C190.1708 (7)0.6813 (6)0.4242 (5)0.058 (2)
H19A0.25510.70100.37810.070*
H19B0.15170.72450.48160.070*
C200.3051 (8)0.9405 (7)0.4636 (6)0.0427 (19)
C210.3588 (8)0.9097 (6)0.5629 (6)0.052 (2)
H210.30790.94150.62080.062*
C220.4862 (9)0.8328 (7)0.5734 (6)0.053 (2)
C230.5646 (8)0.7859 (6)0.4863 (7)0.058 (2)
H230.65180.73430.49510.069*
C240.5151 (8)0.8146 (6)0.3881 (5)0.051 (2)
H240.56830.78290.33090.061*
C250.3833 (8)0.8923 (6)0.3751 (7)0.0455 (19)
C260.1759 (9)1.0241 (7)0.4569 (6)0.067 (2)
H260.13611.05410.51810.080*
O1W−0.0713 (9)0.6212 (10)0.6775 (8)0.101 (4)0.50
H1WA−0.14520.64810.71250.152*0.50
H1WB−0.05870.65690.61090.152*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0656 (10)0.0561 (9)0.0502 (9)−0.0107 (8)−0.0282 (8)−0.0044 (7)
Cu20.0598 (7)0.0578 (7)0.0444 (6)−0.0086 (5)−0.0168 (5)−0.0072 (5)
Br10.0910 (7)0.0913 (7)0.0530 (6)−0.0181 (6)−0.0290 (5)−0.0083 (5)
Br20.1119 (8)0.1085 (8)0.0554 (6)−0.0490 (7)−0.0213 (6)−0.0006 (5)
S10.0574 (16)0.0591 (17)0.0571 (15)−0.0124 (13)−0.0245 (13)0.0013 (13)
N10.057 (5)0.045 (4)0.049 (4)−0.012 (4)−0.015 (4)−0.012 (4)
N20.045 (5)0.050 (5)0.057 (5)−0.010 (4)−0.012 (4)−0.014 (4)
N30.074 (5)0.052 (4)0.037 (4)−0.019 (4)−0.028 (4)0.005 (3)
O10.132 (5)0.107 (5)0.067 (4)0.007 (4)−0.059 (4)−0.029 (4)
O20.059 (4)0.080 (4)0.116 (5)−0.014 (3)−0.006 (4)−0.005 (4)
O30.083 (4)0.060 (4)0.102 (4)−0.023 (3)−0.058 (3)0.033 (3)
O40.061 (4)0.094 (4)0.055 (4)−0.011 (3)−0.022 (3)−0.018 (3)
O50.068 (4)0.086 (4)0.045 (3)0.003 (3)−0.016 (3)−0.021 (3)
O60.061 (3)0.059 (3)0.044 (3)−0.011 (3)−0.019 (3)−0.013 (3)
C10.077 (7)0.069 (7)0.054 (6)−0.028 (6)−0.016 (6)−0.004 (5)
C20.063 (6)0.057 (6)0.090 (7)−0.014 (5)−0.024 (6)−0.010 (6)
C30.070 (7)0.075 (7)0.085 (8)0.008 (6)−0.041 (6)−0.013 (6)
C40.060 (6)0.089 (7)0.058 (6)−0.016 (6)−0.026 (6)−0.016 (6)
C50.060 (7)0.048 (6)0.064 (7)−0.020 (5)−0.025 (6)−0.004 (5)
C60.064 (7)0.043 (6)0.057 (6)−0.015 (5)−0.017 (6)−0.006 (5)
C70.103 (8)0.062 (7)0.040 (6)−0.016 (6)−0.017 (6)−0.003 (5)
C80.109 (9)0.076 (7)0.043 (6)−0.032 (6)0.007 (6)−0.025 (6)
C90.083 (7)0.068 (7)0.067 (7)−0.007 (5)−0.013 (6)−0.016 (6)
C100.052 (6)0.066 (6)0.054 (6)−0.004 (5)−0.013 (5)−0.009 (5)
C110.085 (7)0.058 (6)0.035 (5)−0.014 (5)−0.022 (5)−0.005 (4)
C120.075 (6)0.047 (5)0.061 (6)−0.014 (5)−0.022 (5)−0.013 (5)
C130.093 (7)0.048 (5)0.032 (5)−0.021 (5)−0.015 (5)0.001 (4)
C140.061 (6)0.086 (7)0.064 (6)−0.016 (5)−0.024 (5)−0.014 (5)
C150.062 (6)0.063 (6)0.063 (6)−0.013 (5)−0.025 (5)−0.012 (5)
C160.063 (7)0.047 (6)0.060 (7)−0.001 (5)−0.027 (6)−0.011 (5)
C170.051 (5)0.027 (5)0.068 (6)−0.002 (4)−0.033 (5)−0.004 (4)
C180.065 (5)0.048 (5)0.062 (5)−0.018 (4)−0.040 (4)0.001 (4)
C190.061 (6)0.051 (5)0.056 (5)−0.007 (4)−0.031 (4)0.008 (4)
C200.037 (5)0.041 (5)0.052 (6)0.002 (4)−0.011 (5)−0.021 (4)
C210.052 (6)0.051 (6)0.054 (6)−0.016 (5)0.001 (5)−0.019 (4)
C220.057 (6)0.059 (6)0.047 (5)−0.013 (5)−0.019 (5)−0.011 (4)
C230.049 (6)0.047 (5)0.074 (6)0.004 (4)−0.017 (5)−0.017 (5)
C240.062 (6)0.050 (5)0.044 (5)−0.010 (5)−0.018 (5)−0.014 (4)
C250.046 (6)0.035 (5)0.055 (6)−0.004 (4)−0.014 (5)−0.009 (4)
C260.085 (7)0.069 (6)0.046 (6)−0.014 (6)0.003 (5)−0.025 (5)
O1W0.071 (8)0.148 (11)0.085 (8)0.006 (7)0.019 (7)−0.076 (8)

Geometric parameters (Å, °)

Cu1—O41.889 (5)C7—H70.9300
Cu1—O4i1.889 (5)C8—C91.356 (9)
Cu1—N31.967 (6)C8—H80.9300
Cu1—N3i1.967 (6)C9—C101.370 (9)
Cu2—O61.886 (4)C9—H90.9300
Cu2—O51.963 (5)C10—H100.9300
Cu2—N21.986 (6)C11—C161.395 (10)
Cu2—N11.996 (6)C11—C121.403 (9)
Cu2—O32.249 (5)C11—C171.449 (8)
Br1—C221.922 (7)C12—C131.389 (8)
Br2—C131.901 (7)C12—H120.9300
S1—O11.431 (5)C13—C141.385 (9)
S1—O21.441 (5)C14—C151.359 (9)
S1—O31.449 (4)C14—H140.9300
S1—C191.758 (6)C15—C161.450 (9)
N1—C101.314 (8)C15—H150.9300
N1—C61.369 (8)C17—H170.9300
N2—C11.341 (8)C18—C191.502 (7)
N2—C51.348 (8)C18—H18A0.9700
N3—C171.296 (7)C18—H18B0.9700
N3—C181.495 (7)C19—H19A0.9700
O4—C161.292 (8)C19—H19B0.9700
O5—C261.280 (7)C20—C261.404 (9)
O6—C251.303 (7)C20—C211.404 (8)
C1—C21.415 (9)C20—C251.421 (9)
C1—H10.9300C21—C221.362 (8)
C2—C31.343 (9)C21—H210.9300
C2—H20.9300C22—C231.400 (9)
C3—C41.339 (9)C23—C241.373 (8)
C3—H30.9300C23—H230.9300
C4—C51.416 (9)C24—C251.405 (8)
C4—H40.9300C24—H240.9300
C5—C61.449 (10)C26—H260.9300
C6—C71.379 (9)O1W—H1WA0.8251
C7—C81.363 (9)O1W—H1WB0.8381
O4—Cu1—O4i180.000 (1)C8—C9—H9121.4
O4—Cu1—N392.1 (2)C10—C9—H9121.4
O4i—Cu1—N387.9 (2)N1—C10—C9124.0 (8)
O4—Cu1—N3i87.9 (2)N1—C10—H10118.0
O4i—Cu1—N3i92.1 (2)C9—C10—H10118.0
N3—Cu1—N3i180.0 (3)C16—C11—C12120.9 (7)
O6—Cu2—O593.61 (19)C16—C11—C17122.1 (7)
O6—Cu2—N2166.7 (2)C12—C11—C17116.7 (8)
O5—Cu2—N293.4 (3)C13—C12—C11120.0 (7)
O6—Cu2—N190.5 (2)C13—C12—H12120.0
O5—Cu2—N1166.5 (2)C11—C12—H12120.0
N2—Cu2—N180.3 (3)C14—C13—C12119.0 (7)
O6—Cu2—O3102.37 (17)C14—C13—Br2120.3 (6)
O5—Cu2—O391.9 (2)C12—C13—Br2120.7 (7)
N2—Cu2—O388.68 (19)C15—C14—C13123.3 (7)
N1—Cu2—O399.8 (2)C15—C14—H14118.4
O1—S1—O2111.7 (4)C13—C14—H14118.4
O1—S1—O3114.7 (3)C14—C15—C16118.5 (7)
O2—S1—O3110.9 (3)C14—C15—H15120.7
O1—S1—C19106.6 (3)C16—C15—H15120.7
O2—S1—C19105.8 (3)O4—C16—C11124.6 (7)
O3—S1—C19106.4 (3)O4—C16—C15117.0 (8)
C10—N1—C6118.0 (7)C11—C16—C15118.3 (8)
C10—N1—Cu2126.4 (6)N3—C17—C11125.8 (7)
C6—N1—Cu2115.5 (6)N3—C17—H17117.1
C1—N2—C5120.3 (7)C11—C17—H17117.1
C1—N2—Cu2124.1 (6)N3—C18—C19110.6 (5)
C5—N2—Cu2115.6 (6)N3—C18—H18A109.5
C17—N3—C18113.8 (6)C19—C18—H18A109.5
C17—N3—Cu1124.5 (5)N3—C18—H18B109.5
C18—N3—Cu1121.6 (4)C19—C18—H18B109.5
S1—O3—Cu2143.6 (3)H18A—C18—H18B108.1
C16—O4—Cu1129.1 (5)C18—C19—S1114.0 (4)
C26—O5—Cu2124.1 (5)C18—C19—H19A108.7
C25—O6—Cu2127.8 (5)S1—C19—H19A108.7
N2—C1—C2120.6 (8)C18—C19—H19B108.7
N2—C1—H1119.7S1—C19—H19B108.7
C2—C1—H1119.7H19A—C19—H19B107.6
C3—C2—C1118.5 (9)C26—C20—C21116.3 (8)
C3—C2—H2120.7C26—C20—C25123.4 (7)
C1—C2—H2120.7C21—C20—C25120.3 (7)
C4—C3—C2121.5 (9)C22—C21—C20119.2 (7)
C4—C3—H3119.3C22—C21—H21120.4
C2—C3—H3119.3C20—C21—H21120.4
C3—C4—C5119.7 (8)C21—C22—C23120.9 (7)
C3—C4—H4120.1C21—C22—Br1121.7 (6)
C5—C4—H4120.1C23—C22—Br1117.4 (7)
N2—C5—C4119.3 (8)C24—C23—C22121.2 (7)
N2—C5—C6115.3 (8)C24—C23—H23119.4
C4—C5—C6125.3 (9)C22—C23—H23119.4
N1—C6—C7121.1 (8)C23—C24—C25119.3 (7)
N1—C6—C5113.3 (8)C23—C24—H24120.3
C7—C6—C5125.6 (9)C25—C24—H24120.3
C8—C7—C6117.9 (8)O6—C25—C24117.2 (7)
C8—C7—H7121.0O6—C25—C20123.7 (7)
C6—C7—H7121.0C24—C25—C20119.1 (7)
C9—C8—C7121.8 (9)O5—C26—C20127.0 (7)
C9—C8—H8119.1O5—C26—H26116.5
C7—C8—H8119.1C20—C26—H26116.5
C8—C9—C10117.1 (8)H1WA—O1W—H1WB116.5

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.842.403.197 (11)159
O1W—H1WA···Br2ii0.832.553.145 (9)130
C4—H4···O1iii0.932.423.316 (9)163
C23—H23···O2iv0.932.543.324 (9)142

Symmetry codes: (ii) −x, −y+1, −z+2; (iii) −x, −y+2, −z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2446).

References

  • Bruker (2007). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Iglesias, S., Castillo, O., Luque, A. & Romaan, P. (2003). Inorg. Chim. Acta, 349, 273–278.
  • Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun.6, 474–477.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Murphy, B., Roberts, G., Tyagi, S. & Hathaway, B. J. (2004). J. Mol. Struct.698, 25–36.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, Y.-X. & Gao, G.-Z. (2005). Acta Cryst. E61, m354–m355.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography