PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m545–m546.
Published online 2009 April 22. doi:  10.1107/S1600536809014226
PMCID: PMC2977595

Diaqua­bis(2-chloro­benzoato-κO)bis­(N,N-diethyl­nicotinamide-κN 1)nickel(II)

Abstract

In the monomeric and centrosymmetric title NiII complex, [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2], the NiII ion is located on an inversion center. The asymmetric unit contains one 2-chloro­benzoate ligand, one diethyl­nicotinamide (DENA) ligand and one coordinating water mol­ecule, the ligands being monodentate. The four O atoms in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by two N atoms of the DENA ligands in axial positions. The dihedral angle between the benzene ring and the attached carboxyl­ate group is 87.36 (10)°, while the pyridine and benzene rings are oriented at an angle of 41.90 (5)°. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to (10An external file that holds a picture, illustration, etc.
Object name is e-65-0m545-efi1.jpg).

Related literature

For general backgroud, see: Antolini et al. (1982 [triangle]); Bigoli et al. (1972 [triangle]); Nadzhafov et al. (1981 [triangle]); Shnulin et al. (1981 [triangle]). For related structures, see: Hökelek et al. (1995 [triangle], 1997 [triangle], 2007 [triangle], 2008 [triangle]); Hökelek & Necefoğlu (1996 [triangle], 1997 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m545-scheme1.jpg

Experimental

Crystal data

  • [Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2]
  • M r = 762.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m545-efi2.jpg
  • a = 12.7505 (2) Å
  • b = 10.3565 (2) Å
  • c = 14.9673 (3) Å
  • β = 114.046 (1)°
  • V = 1804.92 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 100 K
  • 0.27 × 0.18 × 0.11 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.828, T max = 0.923
  • 16593 measured reflections
  • 4519 independent reflections
  • 3781 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.084
  • S = 1.06
  • 4519 reflections
  • 233 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.08 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014226/ci2776sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014226/ci2776Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer.

supplementary crystallographic information

Comment

Transition metal complexes with biochemically active ligands frequently show interesting physical and/or chemical properties, as a result they may find applications in biological systems (Antolini et al., 1982). The structural functions and coordination relationships of the arylcarboxylate ion in transition metal complexes of benzoic acid derivatives change depending on the nature and position of the substituent groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972).

The structure determination of the title compound, (I), a nickel complex with two 2-chlorobenzoate (CB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the NiII ion on a centre of symmetry. It contains two CB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms O1', O4') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.2616 (17) Å] and C1—O2 [1.2435 (18) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.256 (6) and 1.245 (6) Å in [Mn(DENA)2(C7H4ClO2)2(H2O)2], (II) (Hökelek et al., 2008), 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4].2(H2O), (III) (Hökelek & Necefoğlu, 2007), 1.260 (4) and 1.252 (4) Å in [Zn(DENA)2(C7H4FO2)2(H2O)2],(IV) (Hökelek et al., 2007), 1.259 (9) and 1.273 (9) Å in Cu2(DENA)2(C6H5COO)4, (V) (Hökelek et al., 1995), 1.279 (4) and 1.246 (4) Å in [Zn2(DENA)2(C7H5O3)4].2H2O, (VI) (Hökelek & Necefoğlu, 1996), 1.251 (6) and 1.254 (7) Å in [Co(DENA)2(C7H5O3)2(H2O)2], (VII) (Hökelek & Necefoğlu, 1997) and 1.278 (3) and 1.246 (3) Å in [Cu(DENA)2(C7H4NO4)2(H2O)2], (VIII) (Hökelek et al., 1997). In (I), the average Ni—O bond length is 2.0602 (10) Å and the Ni1 atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.276 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 87.36 (10)°, while that between rings A and B (N1/C8—C12) is 41.90 (5)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 2) link the molecules into a two-dimesional network parallel to the (1 0 1).

Experimental

The title compound was prepared by the reaction of Ni(SO4).6(H2O) (1.31 g, 5 mmol) in H2O (20 ml) and DENA (1.78 g, 10 mmol) in H2O (20 ml) with sodium 2-chlorobenzoate (1.785 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for 3 d, giving blue single crystals.

Refinement

H atoms of water molecule were located in a difference Fourier map and refined isotropically, with a O-H restraint. The remaining H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator (- x, 1 -y, -z).

Crystal data

[Ni(C7H4ClO2)2(C10H14N2O)2(H2O)2]F(000) = 796
Mr = 762.31Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7783 reflections
a = 12.7505 (2) Åθ = 2.5–28.4°
b = 10.3565 (2) ŵ = 0.74 mm1
c = 14.9673 (3) ÅT = 100 K
β = 114.046 (1)°Block, blue
V = 1804.92 (6) Å30.27 × 0.18 × 0.11 mm
Z = 2

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer4519 independent reflections
Radiation source: fine-focus sealed tube3781 reflections with I > 2σ(I)
graphiteRint = 0.034
[var phi] and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −17→17
Tmin = 0.828, Tmax = 0.923k = −13→12
16593 measured reflectionsl = −20→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0456P)2 + 0.2566P] where P = (Fo2 + 2Fc2)/3
4519 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 1.08 e Å3
2 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.50000.00000.00853 (8)
Cl1−0.31050 (4)0.35043 (4)0.08471 (3)0.02678 (11)
O1−0.03038 (8)0.44605 (10)0.11794 (7)0.0128 (2)
O2−0.13227 (11)0.61462 (11)0.13322 (9)0.0268 (3)
O30.43014 (9)0.61598 (10)0.39621 (7)0.0151 (2)
O40.11786 (9)0.34845 (10)0.03504 (8)0.0123 (2)
H410.1299 (19)0.338 (2)−0.0143 (13)0.042 (6)*
H420.1100 (18)0.2746 (17)0.0570 (15)0.043 (6)*
N10.13740 (10)0.61957 (11)0.08958 (9)0.0114 (2)
N20.48379 (11)0.49545 (12)0.29580 (9)0.0152 (3)
C1−0.09075 (13)0.50440 (14)0.15415 (11)0.0135 (3)
C2−0.11211 (13)0.42820 (14)0.23115 (11)0.0148 (3)
C3−0.03393 (14)0.42920 (16)0.32862 (12)0.0202 (3)
H30.02990.48300.34800.024*
C4−0.05013 (15)0.35049 (17)0.39746 (12)0.0259 (4)
H40.00270.35170.46240.031*
C5−0.14508 (16)0.27062 (17)0.36887 (13)0.0270 (4)
H5−0.15510.21690.41450.032*
C6−0.22513 (15)0.27003 (16)0.27308 (13)0.0235 (4)
H6−0.28950.21700.25410.028*
C7−0.20830 (14)0.34949 (15)0.20560 (11)0.0183 (3)
C80.14003 (12)0.74683 (14)0.07426 (11)0.0136 (3)
H80.08040.78330.02090.016*
C90.22780 (12)0.82654 (14)0.13450 (11)0.0151 (3)
H90.22550.91480.12230.018*
C100.31847 (12)0.77378 (14)0.21268 (11)0.0139 (3)
H100.37760.82550.25470.017*
C110.31889 (12)0.64090 (14)0.22689 (10)0.0119 (3)
C120.22679 (12)0.56819 (14)0.16507 (10)0.0124 (3)
H120.22670.47990.17620.015*
C130.41594 (12)0.58190 (13)0.31243 (11)0.0120 (3)
C140.47757 (15)0.45998 (18)0.19868 (12)0.0254 (4)
H14A0.55350.46700.19890.031*
H14B0.42780.52050.15070.031*
C150.43258 (16)0.32361 (19)0.16849 (14)0.0368 (5)
H15A0.43720.30230.10780.055*
H15B0.35410.31870.16050.055*
H15C0.47810.26380.21810.055*
C160.58189 (13)0.44280 (15)0.38015 (11)0.0166 (3)
H16A0.59670.35510.36570.020*
H16B0.56280.44010.43660.020*
C170.68933 (14)0.52372 (17)0.40425 (13)0.0233 (4)
H17A0.75120.48760.46000.035*
H17B0.67500.61050.41880.035*
H17C0.70980.52420.34920.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.00850 (13)0.00775 (13)0.00768 (13)0.00027 (9)0.00159 (10)0.00033 (9)
Cl10.0248 (2)0.0307 (2)0.0230 (2)−0.00606 (17)0.00789 (18)−0.00259 (17)
O10.0143 (5)0.0135 (5)0.0110 (5)0.0022 (4)0.0055 (4)0.0018 (4)
O20.0457 (8)0.0154 (6)0.0323 (7)0.0119 (5)0.0293 (6)0.0083 (5)
O30.0180 (5)0.0122 (5)0.0103 (5)0.0014 (4)0.0008 (4)−0.0013 (4)
O40.0136 (5)0.0093 (5)0.0121 (5)0.0011 (4)0.0034 (4)0.0006 (4)
N10.0114 (6)0.0109 (6)0.0102 (6)−0.0004 (5)0.0027 (5)0.0001 (5)
N20.0143 (6)0.0175 (7)0.0098 (6)0.0038 (5)0.0009 (5)0.0004 (5)
C10.0158 (7)0.0125 (7)0.0126 (7)−0.0021 (6)0.0061 (6)−0.0011 (6)
C20.0181 (7)0.0132 (7)0.0166 (7)0.0037 (6)0.0106 (6)0.0016 (6)
C30.0185 (8)0.0232 (9)0.0194 (8)0.0028 (6)0.0081 (7)0.0026 (7)
C40.0288 (9)0.0322 (10)0.0175 (8)0.0105 (8)0.0104 (7)0.0082 (7)
C50.0380 (10)0.0253 (9)0.0269 (9)0.0072 (8)0.0228 (9)0.0114 (7)
C60.0293 (9)0.0199 (9)0.0286 (9)−0.0026 (7)0.0193 (8)0.0018 (7)
C70.0212 (8)0.0181 (8)0.0175 (8)0.0008 (6)0.0098 (7)0.0002 (6)
C80.0125 (7)0.0120 (7)0.0131 (7)0.0019 (6)0.0018 (6)0.0028 (6)
C90.0169 (7)0.0093 (7)0.0164 (7)−0.0002 (6)0.0039 (6)0.0010 (6)
C100.0137 (7)0.0125 (7)0.0133 (7)−0.0022 (6)0.0033 (6)−0.0019 (6)
C110.0117 (7)0.0120 (7)0.0097 (7)0.0005 (5)0.0022 (6)−0.0006 (5)
C120.0144 (7)0.0097 (7)0.0113 (7)0.0006 (5)0.0032 (6)0.0012 (5)
C130.0114 (7)0.0089 (7)0.0118 (7)−0.0023 (5)0.0009 (6)−0.0005 (5)
C140.0223 (9)0.0383 (10)0.0129 (8)0.0119 (7)0.0042 (7)−0.0016 (7)
C150.0259 (10)0.0442 (12)0.0291 (10)0.0087 (8)−0.0003 (8)−0.0213 (9)
C160.0159 (7)0.0144 (8)0.0147 (7)0.0054 (6)0.0012 (6)0.0021 (6)
C170.0169 (8)0.0271 (9)0.0214 (9)0.0006 (7)0.0033 (7)−0.0046 (7)

Geometric parameters (Å, °)

Ni1—O1i2.0336 (10)C7—C21.390 (2)
Ni1—O12.0336 (10)C7—C61.386 (2)
Ni1—O42.0867 (10)C8—C91.387 (2)
Ni1—O4i2.0867 (10)C8—H80.93
Ni1—N1i2.1181 (12)C9—H90.93
Ni1—N12.1181 (12)C10—C91.379 (2)
Cl1—C71.7466 (17)C10—H100.93
O1—C11.2616 (17)C11—C101.392 (2)
O2—C11.2435 (18)C11—C121.384 (2)
O3—C131.2429 (17)C12—H120.93
O4—H410.820 (15)C13—N21.3369 (18)
O4—H420.854 (15)C13—C111.501 (2)
N1—C81.3405 (19)C14—H14A0.97
N1—C121.3452 (18)C14—H14B0.97
N2—C141.470 (2)C15—C141.522 (3)
N2—C161.4728 (19)C15—H15A0.96
C2—C31.392 (2)C15—H15B0.96
C2—C11.510 (2)C15—H15C0.96
C3—C41.394 (2)C16—H16A0.97
C3—H30.93C16—H16B0.97
C4—H40.93C17—C161.519 (2)
C5—C41.382 (3)C17—H17A0.96
C5—H50.93C17—H17B0.96
C6—C51.380 (2)C17—H17C0.96
C6—H60.93
O1i—Ni1—O1180.0C6—C7—C2121.94 (15)
O1i—Ni1—O493.00 (4)C6—C7—Cl1119.13 (13)
O1—Ni1—O487.00 (4)N1—C8—C9122.93 (14)
O1i—Ni1—O4i87.00 (4)N1—C8—H8118.5
O1—Ni1—O4i93.00 (4)C9—C8—H8118.5
O1i—Ni1—N1i90.70 (4)C8—C9—H9120.3
O1—Ni1—N1i89.30 (4)C10—C9—C8119.41 (14)
O1i—Ni1—N189.30 (4)C10—C9—H9120.3
O1—Ni1—N190.70 (4)C9—C10—C11118.10 (13)
O4—Ni1—O4i180.0C9—C10—H10121.0
O4—Ni1—N1i92.55 (4)C11—C10—H10121.0
O4i—Ni1—N1i87.45 (4)C10—C11—C13118.90 (13)
O4—Ni1—N187.45 (4)C12—C11—C10119.09 (13)
O4i—Ni1—N192.55 (4)C12—C11—C13121.91 (13)
N1i—Ni1—N1180.00 (7)N1—C12—C11122.94 (13)
C1—O1—Ni1127.35 (9)N1—C12—H12118.5
Ni1—O4—H41104.4 (15)C11—C12—H12118.5
Ni1—O4—H42125.8 (15)O3—C13—N2122.60 (13)
H41—O4—H42109 (2)O3—C13—C11118.39 (13)
C8—N1—Ni1122.58 (10)N2—C13—C11119.01 (13)
C8—N1—C12117.45 (12)N2—C14—C15112.80 (15)
C12—N1—Ni1119.97 (9)N2—C14—H14A109.0
C13—N2—C14124.98 (13)N2—C14—H14B109.0
C13—N2—C16118.44 (12)C15—C14—H14A109.0
C14—N2—C16116.10 (12)C15—C14—H14B109.0
O1—C1—C2114.14 (12)H14A—C14—H14B107.8
O2—C1—O1127.09 (14)C14—C15—H15A109.5
O2—C1—C2118.77 (13)C14—C15—H15B109.5
C3—C2—C1121.41 (14)C14—C15—H15C109.5
C7—C2—C1120.65 (14)H15A—C15—H15B109.5
C7—C2—C3117.87 (14)H15A—C15—H15C109.5
C2—C3—C4120.80 (16)H15B—C15—H15C109.5
C2—C3—H3119.6N2—C16—C17111.60 (13)
C4—C3—H3119.6N2—C16—H16A109.3
C3—C4—H4120.1N2—C16—H16B109.3
C5—C4—C3119.74 (16)C17—C16—H16A109.3
C5—C4—H4120.1C17—C16—H16B109.3
C6—C5—C4120.52 (15)H16A—C16—H16B108.0
C6—C5—H5119.7C16—C17—H17A109.5
C4—C5—H5119.7C16—C17—H17B109.5
C5—C6—C7119.08 (16)C16—C17—H17C109.5
C5—C6—H6120.5H17A—C17—H17B109.5
C7—C6—H6120.5H17A—C17—H17C109.5
C2—C7—Cl1118.94 (12)H17B—C17—H17C109.5
O4—Ni1—O1—C1172.55 (12)C1—C2—C3—C4−174.81 (14)
O4i—Ni1—O1—C1−7.45 (12)C7—C2—C3—C42.0 (2)
N1i—Ni1—O1—C1−94.85 (12)C2—C3—C4—C5−0.2 (2)
N1—Ni1—O1—C185.15 (12)C6—C5—C4—C3−1.3 (3)
O1i—Ni1—N1—C858.61 (11)C7—C6—C5—C40.8 (3)
O1—Ni1—N1—C8−121.39 (11)Cl1—C7—C2—C1−5.36 (19)
O1i—Ni1—N1—C12−121.15 (11)Cl1—C7—C2—C3177.78 (12)
O1—Ni1—N1—C1258.85 (11)C6—C7—C2—C1174.35 (14)
O4—Ni1—N1—C8151.65 (11)C6—C7—C2—C3−2.5 (2)
O4i—Ni1—N1—C8−28.35 (11)Cl1—C7—C6—C5−179.16 (12)
O4—Ni1—N1—C12−28.11 (11)C2—C7—C6—C51.1 (2)
O4i—Ni1—N1—C12151.89 (11)N1—C8—C9—C101.6 (2)
Ni1—O1—C1—O2−9.8 (2)C11—C10—C9—C81.1 (2)
Ni1—O1—C1—C2170.38 (9)C12—C11—C10—C9−2.7 (2)
Ni1—N1—C8—C9177.78 (11)C13—C11—C10—C9−179.11 (13)
C12—N1—C8—C9−2.5 (2)C10—C11—C12—N11.8 (2)
Ni1—N1—C12—C11−179.49 (11)C13—C11—C12—N1178.16 (13)
C8—N1—C12—C110.7 (2)O3—C13—N2—C14−174.33 (15)
C13—N2—C14—C15−110.16 (17)O3—C13—N2—C16−2.5 (2)
C16—N2—C14—C1577.88 (18)C11—C13—N2—C145.4 (2)
C13—N2—C16—C17−90.03 (17)C11—C13—N2—C16177.22 (12)
C14—N2—C16—C1782.48 (17)O3—C13—C11—C1061.59 (19)
C3—C2—C1—O185.51 (18)O3—C13—C11—C12−114.75 (16)
C3—C2—C1—O2−94.30 (19)N2—C13—C11—C10−118.19 (15)
C7—C2—C1—O1−91.23 (17)N2—C13—C11—C1265.48 (19)
C7—C2—C1—O288.96 (19)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.82 (2)1.86 (2)2.6267 (17)155 (2)
O4—H42···O3ii0.85 (2)1.93 (2)2.7826 (15)172 (2)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2776).

References

  • Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  • Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hökelek, T., Budak, K. & Necefoğlu, H. (1997). Acta Cryst. C53, 1049–1051.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.
  • Hökelek, T., Çaylak, N. & Necefoğlu, H. (2008). Acta Cryst. E64, m505–m506. [PMC free article] [PubMed]
  • Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.
  • Hökelek, T. & Necefoğlu, H. (1997). Acta Cryst. C53, 187–189.
  • Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.
  • Hökelek, T., Necefoğlu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.
  • Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography