PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m537.
Published online 2009 April 18. doi:  10.1107/S1600536809013877
PMCID: PMC2977589

catena-Poly[[dichloridozinc(II)]-μ-1,4-bis­(3-pyridylmeth­yl)piperazine]

Abstract

In the title compound, [ZnCl2(C16H20N4)]n, tetra­hedrally coordinated divalent Zn atoms are ligated by two Cl atoms and two N-donor atoms from two 1,4-bis­(3-pyridylmeth­yl)­piperazine (3-bpmp) ligands. The tethering 3-bpmp ligands promote the formation of [ZnCl2(3-bpmp)]n chains situated parallel to (An external file that holds a picture, illustration, etc.
Object name is e-65-0m537-efi1.jpg02). These chains aggregate via C—H(...)Cl inter­actions to form supra­molecular layers, which in turn stack to construct the three-dimensional crystal structure.

Related literature

The structure was refined from a merohedrally twinned crystal; for the generation of reflection data from the major twin component, see: Sheldrick (2007 [triangle]). For 1,4-bis­(3-pyridylmeth­yl)piperazine coordination polymers of copper aryl­carboxyl­ates, see: Johnston et al. (2008 [triangle]). For the synthesis of the ligand, see: Pocic et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m537-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C16H20N4)]
  • M r = 404.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m537-efi2.jpg
  • a = 11.4474 (4) Å
  • b = 13.0007 (4) Å
  • c = 12.4234 (4) Å
  • β = 95.909 (2)°
  • V = 1839.08 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.63 mm−1
  • T = 173 K
  • 0.38 × 0.21 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2007 [triangle]) T min = 0.568, T max = 0.813
  • 21222 measured reflections
  • 6035 independent reflections
  • 3366 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.132
  • S = 1.10
  • 6035 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013877/ng2573sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013877/ng2573Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the American Chemical Society Petroleum Research Fund for funding this work.

supplementary crystallographic information

Comment

In comparison to coordination polymers based on the rigid rod tether 4,4'- bipyridine, extended solids based on the hydrogen-bonding capable bis(3-pyridylmethyl)piperazine (3-bpmp) ligand are much less common (Johnston et al., 2008). The title compound was obtained during an attempt to prepare a zinc azide 3-bpmp coordination polymer.

The asymmetric unit of the title compound consists of a divalent Zn atom, two Cl atoms, and two halves of two crystallographically distinct 3-bpmp molecules. The coordination environment at Zn is a slightly distorted {ZnCl2N2} tetrahedron, with two chloro ligands and two N donor atoms from crystallographically distinct bis(3-pyridylmethyl)piperazine (3-bpmp) ligands (Figure 1).

Neighboring Zn atoms are bridged by tethering 3-bpmp ligands to construct neutral [ZnCl2(3-bpmp)]n coordination polymer chains, that are oriented parallel to the (1 0 2) crystal direction. There are crystallographic inversion centres at the centroids of the piperazinyl rings within the 3-bpmp ligands. The through-ligand Zn···Zn distances within the chain motifs are 14.218 (4) and 14.259 (4) Å. These chains aggregate by C—H···Cl interactions to construct a supramolecular layer that is oriented parallel to the ac crystal planes (Figure 2). In turn these layer motifs stack by means of crystal packing forces to establish the three-dimensional crystal structure of the title compound (Figure 3).

Experimental

Zinc chloride dihydrate and sodium azide were obtained commercially. Bis(3-pyridylmethyl)piperazine (3-bpmp) was prepared via a published procedure (Pocic et al., 2005). Zinc chloride dihydrate (0.082 g, 0.48 mmol) was dissolved in 6 ml water in a glass vial. A 2 ml aliquot of tetrahydrofuran was carefully layered on the top of the zinc chloride solution. Above the tetrahydrofuran layer was gently placed a mixture of sodium azide (0.065 g, 1.0 mmol) and 3-bpmp (134 mg, 0.500 mmol) taken up in 5.5 ml of a 10:1 methanol:water mixture. Colourless blocks of the title compound deposited after standing at 25 °C for one week.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as sticks. Colour codes: gray Zn, green Cl, blue N, black C.
Fig. 2.
A layer of [ZnCl2(3-bpmp)]n chains in the title compound. C—H···Cl interactions are shown as dashed lines.
Fig. 3.
Stacking of layer motifs in the title compound.

Crystal data

[ZnCl2(C16H20N4)]F(000) = 832
Mr = 404.63Dx = 1.461 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6035 reflections
a = 11.4474 (4) Åθ = 2.3–32.2°
b = 13.0007 (4) ŵ = 1.63 mm1
c = 12.4234 (4) ÅT = 173 K
β = 95.909 (2)°Block, colourless
V = 1839.08 (10) Å30.38 × 0.21 × 0.13 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer6035 independent reflections
Radiation source: fine-focus sealed tube3366 reflections with I > 2σ(I)
graphiteRint = 0.059
ω–ψ scansθmax = 32.2°, θmin = 2.3°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2007)h = −17→16
Tmin = 0.568, Tmax = 0.813k = 0→19
21222 measured reflectionsl = 0→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1746P] where P = (Fo2 + 2Fc2)/3
6035 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.60 e Å3

Special details

Experimental. Reflection data were collected on a non-merohedrally twinned crystal. The twin law was determined with CELLNOW (Sheldrick, 2003). The structure was solved and refined using reflections from only the major twin component, whose reflection file was generated using TWINABS (Sheldrick, 2007). Composite reflections belonging to both twin domains were omitted from the reflection list, causing the loss of 246 reflections from the major twin component data. The data set was still 99.9% complete to 2θ of 50°.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.25226 (2)0.03824 (2)0.00021 (2)0.02591 (10)
Cl10.41393 (5)0.13442 (5)0.00653 (5)0.03268 (16)
Cl20.08858 (5)0.13279 (5)−0.00242 (5)0.03181 (16)
N10.25698 (18)−0.06042 (15)−0.12735 (16)0.0271 (4)
N20.48104 (17)−0.04111 (15)−0.39476 (16)0.0268 (5)
N30.24771 (17)−0.05999 (15)0.12836 (16)0.0261 (4)
N40.04009 (17)−0.07296 (15)0.42481 (16)0.0252 (4)
C10.3501 (2)−0.05974 (18)−0.18528 (19)0.0266 (5)
H10.4074−0.0074−0.17060.032*
C20.3670 (2)−0.13096 (18)−0.26506 (19)0.0262 (5)
C30.2813 (2)−0.2056 (2)−0.2866 (2)0.0344 (6)
H30.2886−0.2556−0.34130.041*
C40.1844 (2)−0.2069 (2)−0.2272 (2)0.0401 (7)
H40.1249−0.2575−0.24130.048*
C50.1758 (2)−0.13440 (19)−0.1481 (2)0.0331 (6)
H50.1104−0.1366−0.10680.040*
C60.4782 (2)−0.12722 (18)−0.31972 (19)0.0284 (5)
H6A0.5461−0.1218−0.26380.034*
H6B0.4863−0.1923−0.35970.034*
C70.3966 (2)−0.05658 (19)−0.49056 (19)0.0293 (6)
H7A0.3164−0.0624−0.46800.035*
H7B0.4149−0.1215−0.52680.035*
C80.5991 (2)−0.03190 (19)−0.4310 (2)0.0292 (6)
H8A0.6196−0.0966−0.46660.035*
H8B0.6575−0.0205−0.36770.035*
C110.1506 (2)−0.06356 (18)0.18122 (18)0.0252 (5)
H110.0869−0.01930.15810.030*
C120.1394 (2)−0.12847 (17)0.26723 (19)0.0242 (5)
C130.2323 (2)−0.19399 (18)0.3005 (2)0.0284 (5)
H130.2279−0.23910.36010.034*
C140.3317 (2)−0.1922 (2)0.2450 (2)0.0337 (6)
H140.3956−0.23710.26540.040*
C150.3364 (2)−0.12444 (19)0.1598 (2)0.0311 (6)
H150.4047−0.12340.12230.037*
C160.0267 (2)−0.12896 (19)0.32236 (19)0.0271 (5)
H16A−0.0371−0.09720.27360.032*
H16B0.0040−0.20090.33580.032*
C17−0.0598 (2)−0.09447 (19)0.4855 (2)0.0301 (6)
H17A−0.0649−0.16940.49830.036*
H17B−0.1332−0.07260.44250.036*
C180.0478 (2)0.03892 (18)0.4078 (2)0.0309 (6)
H18A−0.02370.06310.36340.037*
H18B0.11640.05450.36820.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02662 (16)0.03010 (17)0.02220 (16)−0.00085 (13)0.00820 (11)0.00006 (13)
Cl10.0279 (3)0.0348 (3)0.0370 (4)−0.0033 (2)0.0115 (3)−0.0063 (3)
Cl20.0271 (3)0.0334 (3)0.0361 (4)0.0018 (2)0.0088 (3)0.0044 (3)
N10.0284 (11)0.0316 (11)0.0219 (10)0.0012 (9)0.0055 (8)−0.0017 (9)
N20.0242 (10)0.0342 (12)0.0226 (11)0.0022 (8)0.0049 (8)0.0021 (9)
N30.0262 (10)0.0323 (11)0.0206 (10)0.0014 (8)0.0062 (8)−0.0006 (9)
N40.0259 (10)0.0263 (10)0.0252 (11)−0.0019 (8)0.0112 (8)0.0008 (9)
C10.0290 (12)0.0280 (13)0.0232 (13)−0.0012 (10)0.0048 (10)0.0008 (10)
C20.0261 (12)0.0305 (13)0.0225 (13)0.0047 (10)0.0046 (10)0.0014 (10)
C30.0325 (14)0.0361 (15)0.0352 (15)0.0007 (11)0.0067 (12)−0.0090 (12)
C40.0343 (15)0.0385 (16)0.0487 (18)−0.0093 (12)0.0100 (13)−0.0132 (14)
C50.0253 (13)0.0404 (15)0.0348 (15)−0.0037 (11)0.0093 (11)−0.0030 (12)
C60.0302 (13)0.0336 (14)0.0219 (13)0.0029 (10)0.0059 (10)0.0014 (11)
C70.0255 (12)0.0366 (14)0.0254 (13)−0.0027 (10)0.0006 (10)−0.0002 (11)
C80.0247 (12)0.0383 (15)0.0247 (13)0.0002 (10)0.0026 (10)0.0016 (11)
C110.0236 (12)0.0328 (13)0.0196 (12)0.0001 (10)0.0045 (9)−0.0017 (10)
C120.0257 (12)0.0272 (12)0.0205 (12)−0.0013 (10)0.0059 (10)−0.0042 (10)
C130.0293 (13)0.0315 (13)0.0247 (13)−0.0008 (10)0.0048 (10)0.0023 (11)
C140.0270 (13)0.0382 (15)0.0361 (15)0.0078 (11)0.0039 (11)0.0042 (12)
C150.0258 (13)0.0391 (15)0.0301 (14)0.0008 (11)0.0117 (11)−0.0005 (12)
C160.0243 (12)0.0335 (14)0.0247 (13)−0.0057 (10)0.0093 (10)−0.0017 (11)
C170.0339 (13)0.0275 (13)0.0314 (14)−0.0038 (10)0.0158 (11)−0.0007 (11)
C180.0367 (14)0.0285 (14)0.0299 (14)−0.0033 (11)0.0146 (11)0.0032 (11)

Geometric parameters (Å, °)

Zn1—N12.044 (2)C6—H6B0.9900
Zn1—N32.046 (2)C7—C8i1.511 (3)
Zn1—Cl12.2282 (6)C7—H7A0.9900
Zn1—Cl22.2383 (6)C7—H7B0.9900
N1—C51.344 (3)C8—C7i1.511 (3)
N1—C11.346 (3)C8—H8A0.9900
N2—C61.459 (3)C8—H8B0.9900
N2—C71.468 (3)C11—C121.378 (3)
N2—C81.473 (3)C11—H110.9500
N3—C151.343 (3)C12—C131.392 (3)
N3—C111.349 (3)C12—C161.522 (3)
N4—C171.460 (3)C13—C141.389 (3)
N4—C161.461 (3)C13—H130.9500
N4—C181.474 (3)C14—C151.382 (3)
C1—C21.384 (3)C14—H140.9500
C1—H10.9500C15—H150.9500
C2—C31.386 (3)C16—H16A0.9900
C2—C61.505 (3)C16—H16B0.9900
C3—C41.394 (4)C17—C18ii1.503 (3)
C3—H30.9500C17—H17A0.9900
C4—C51.372 (4)C17—H17B0.9900
C4—H40.9500C18—C17ii1.503 (3)
C5—H50.9500C18—H18A0.9900
C6—H6A0.9900C18—H18B0.9900
N1—Zn1—N3102.50 (8)N2—C7—H7B109.5
N1—Zn1—Cl1106.94 (6)C8i—C7—H7B109.5
N3—Zn1—Cl1114.23 (6)H7A—C7—H7B108.1
N1—Zn1—Cl2114.98 (6)N2—C8—C7i110.5 (2)
N3—Zn1—Cl2105.42 (6)N2—C8—H8A109.5
Cl1—Zn1—Cl2112.54 (2)C7i—C8—H8A109.5
C5—N1—C1118.2 (2)N2—C8—H8B109.5
C5—N1—Zn1121.65 (17)C7i—C8—H8B109.5
C1—N1—Zn1119.74 (16)H8A—C8—H8B108.1
C6—N2—C7110.91 (19)N3—C11—C12123.1 (2)
C6—N2—C8109.81 (19)N3—C11—H11118.5
C7—N2—C8108.15 (19)C12—C11—H11118.5
C15—N3—C11118.2 (2)C11—C12—C13118.4 (2)
C15—N3—Zn1122.47 (17)C11—C12—C16120.1 (2)
C11—N3—Zn1119.25 (16)C13—C12—C16121.4 (2)
C17—N4—C16109.71 (18)C14—C13—C12118.8 (2)
C17—N4—C18108.93 (18)C14—C13—H13120.6
C16—N4—C18111.69 (19)C12—C13—H13120.6
N1—C1—C2123.7 (2)C15—C14—C13119.3 (2)
N1—C1—H1118.1C15—C14—H14120.4
C2—C1—H1118.1C13—C14—H14120.4
C1—C2—C3117.3 (2)N3—C15—C14122.1 (2)
C1—C2—C6119.2 (2)N3—C15—H15118.9
C3—C2—C6123.4 (2)C14—C15—H15118.9
C2—C3—C4119.5 (2)N4—C16—C12111.88 (19)
C2—C3—H3120.3N4—C16—H16A109.2
C4—C3—H3120.3C12—C16—H16A109.2
C5—C4—C3119.4 (3)N4—C16—H16B109.2
C5—C4—H4120.3C12—C16—H16B109.2
C3—C4—H4120.3H16A—C16—H16B107.9
N1—C5—C4122.0 (2)N4—C17—C18ii111.0 (2)
N1—C5—H5119.0N4—C17—H17A109.4
C4—C5—H5119.0C18ii—C17—H17A109.4
N2—C6—C2112.85 (19)N4—C17—H17B109.4
N2—C6—H6A109.0C18ii—C17—H17B109.4
C2—C6—H6A109.0H17A—C17—H17B108.0
N2—C6—H6B109.0N4—C18—C17ii110.45 (19)
C2—C6—H6B109.0N4—C18—H18A109.6
H6A—C6—H6B107.8C17ii—C18—H18A109.6
N2—C7—C8i110.8 (2)N4—C18—H18B109.6
N2—C7—H7A109.5C17ii—C18—H18B109.6
C8i—C7—H7A109.5H18A—C18—H18B108.1
N3—Zn1—N1—C554.4 (2)C1—C2—C6—N2−73.3 (3)
Cl1—Zn1—N1—C5174.89 (18)C3—C2—C6—N2109.9 (3)
Cl2—Zn1—N1—C5−59.4 (2)C6—N2—C7—C8i−179.14 (19)
N3—Zn1—N1—C1−117.99 (18)C8—N2—C7—C8i−58.7 (3)
Cl1—Zn1—N1—C12.48 (19)C6—N2—C8—C7i179.64 (19)
Cl2—Zn1—N1—C1128.20 (16)C7—N2—C8—C7i58.5 (3)
N1—Zn1—N3—C1563.97 (19)C15—N3—C11—C121.5 (3)
Cl1—Zn1—N3—C15−51.3 (2)Zn1—N3—C11—C12179.02 (17)
Cl2—Zn1—N3—C15−175.38 (18)N3—C11—C12—C13−0.6 (4)
N1—Zn1—N3—C11−113.45 (18)N3—C11—C12—C16−179.5 (2)
Cl1—Zn1—N3—C11131.27 (16)C11—C12—C13—C14−0.8 (3)
Cl2—Zn1—N3—C117.20 (18)C16—C12—C13—C14178.1 (2)
C5—N1—C1—C20.0 (4)C12—C13—C14—C151.1 (4)
Zn1—N1—C1—C2172.65 (18)C11—N3—C15—C14−1.1 (4)
N1—C1—C2—C31.1 (4)Zn1—N3—C15—C14−178.54 (19)
N1—C1—C2—C6−176.0 (2)C13—C14—C15—N3−0.2 (4)
C1—C2—C3—C4−0.9 (4)C17—N4—C16—C12−167.5 (2)
C6—C2—C3—C4176.0 (2)C18—N4—C16—C1271.6 (3)
C2—C3—C4—C5−0.3 (4)C11—C12—C16—N4−102.5 (2)
C1—N1—C5—C4−1.2 (4)C13—C12—C16—N478.6 (3)
Zn1—N1—C5—C4−173.8 (2)C16—N4—C17—C18ii179.2 (2)
C3—C4—C5—N11.4 (4)C18—N4—C17—C18ii−58.2 (3)
C7—N2—C6—C2−70.0 (3)C17—N4—C18—C17ii57.9 (3)
C8—N2—C6—C2170.5 (2)C16—N4—C18—C17ii179.2 (2)

Symmetry codes: (i) −x+1, −y, −z−1; (ii) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···Cl2iii0.952.773.718 (2)176
C15—H15···Cl1iv0.952.753.698 (2)173

Symmetry codes: (iii) −x, −y, −z; (iv) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2573).

References

  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnston, L. L., Martin, D. P. & LaDuca, R. L. (2008). Inorg. Chim. Acta, 361, 2887–2894.
  • Palmer, D. (2007). CrystalMaker CrystalMaker Software, Bicester, Oxfordshire, England.
  • Pocic, D., Planeix, J.-M., Kyritsakas, N., Jouaiti, A., Abdelaziz, H. & Wais, M. (2005). CrystEngComm, 7, 624–628.
  • Sheldrick, G. M. (2007). TWINABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography