PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m527.
Published online 2009 April 18. doi:  10.1107/S1600536809013518
PMCID: PMC2977583

Aqua­(2,2′-bipyrimidine-κ2 N,N′)(succin­ato-κ2 O 1,O 4)copper(II) dihydrate

Abstract

In the crystal structure of the title compound, [Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O, the CuII atom is chelated by a 2,2′-bipyrimidine (bpm) ligand and a succinate anion in the basal plane; a water mol­ecule in the apical position completes the slightly distorted square-pyramidal coordination geometry. Another carboxyl­ate O atom from an adjacent complex is located in the opposite apical direction, with a Cu(...)O distance of 2.706 (3) Å, and is not considered as a bridging atom. Extensive O—H(...)O and O—H(...)N hydrogen bonding is present in the crystal structure.

Related literature

For general background, see: McCann et al. (1997 [triangle]); Ray et al. (2004 [triangle]); Zhang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m527-scheme1.jpg

Experimental

Crystal data

  • [Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O
  • M r = 391.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m527-efi1.jpg
  • a = 10.6905 (8) Å
  • b = 18.9321 (14) Å
  • c = 7.6105 (6) Å
  • β = 92.2290 (10)°
  • V = 1539.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.46 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.09 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.700, T max = 0.877
  • 7725 measured reflections
  • 2735 independent reflections
  • 2085 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.123
  • S = 1.06
  • 2735 reflections
  • 235 parameters
  • 10 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013518/xu2509sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013518/xu2509Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06-0891), the Natural Science Foundation of Hubei/Shaanxi Provinces of China (2008CDB030) and the Important Project of Hubei Provincial Education Office, China (Z20091301).

supplementary crystallographic information

Comment

Recently, the area of metal-organic framework materials has become one of the intense research activities for their fascinating structural diversities and potential applications in catalysis, nonlinear optics and molecular sensing. As an important family of multidentate O-donor ligands, saturated aliphatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (McCann et al., 1997; Ray et al., 2004; Zhang et al. 2004). Herein, we report the structure of the title complex.

The title compound contains one CuII cation, one suc ligands, one bpm ligands, one coordinated water and two lattice water molecules, as illustrated in Fig. 1. The CuII atom has a slightly distored square-pyramidal geometry (Table 1), in which the CuIIatom is coordinated by two N atoms of bpm ligand, two O atoms from carboxyl groups of succinate anions and one O atom from coordinated water molecule. Each unit is connected by O—H···O hydrogen bonds between carboxyl groups and coordinated water molecules (Table 2) into one-dimensional chain along c-axis. The lattice water molecule acts as both hydrogen-bond donor and acceptor. Just through hydrogen bonds (O—H···O) involving lattice water molecules, those one-dimensional chains are further connected to generate a three-dimensional supramolecular framework.

Experimental

A mixture of CuCl2.2H2O (0.017 g, 0.1 mmol), bpm (0.015 g, 0.1 mmol), sodium succinate (0.0139 g, 0.1 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave. The pH value of the mixture was adjusted to 6 by an aqueous solution of NaOH (0.1 mol/L), and then heated at 393 K for 3 days; blue crystals were obtained on cooling to room temperature at 5 K/h.

Refinement

Water H atoms were located in a difference Fourier map and refined with distance restraints O—H = 0.85 (2) Å, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions and treated using a riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cu(C4H4O4)(C8H6N4)(H2O)]·2H2OF(000) = 804
Mr = 391.83Dx = 1.691 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3225 reflections
a = 10.6905 (8) Åθ = 1.9–25.1°
b = 18.9321 (14) ŵ = 1.46 mm1
c = 7.6105 (6) ÅT = 293 K
β = 92.229 (1)°Prism, blue
V = 1539.2 (2) Å30.30 × 0.20 × 0.09 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2735 independent reflections
Radiation source: fine-focus sealed tube2085 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.700, Tmax = 0.877k = −22→22
7725 measured reflectionsl = −9→4

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0588P)2 + 1.4777P] where P = (Fo2 + 2Fc2)/3
2735 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.46 e Å3
10 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.83883 (5)0.98092 (2)0.42287 (7)0.0376 (2)
O10.7210 (3)0.94912 (16)0.1622 (4)0.0477 (8)
H1A0.673 (4)0.9136 (17)0.160 (6)0.072*
H1B0.774 (4)0.945 (2)0.082 (5)0.072*
O1W0.6018 (4)0.82533 (18)0.2132 (6)0.0724 (11)
H1WA0.5230 (12)0.819 (3)0.212 (9)0.109*
H1WB0.637 (4)0.790 (2)0.170 (9)0.109*
O20.7834 (3)1.07626 (14)0.4543 (4)0.0459 (7)
O2W0.6560 (4)0.3145 (2)0.2485 (6)0.0810 (12)
H2WB0.674 (7)0.2726 (15)0.280 (8)0.121*
H2WA0.676 (7)0.321 (3)0.143 (4)0.121*
O30.7344 (3)1.18623 (16)0.3913 (5)0.0606 (9)
O41.1035 (3)1.06421 (15)0.1176 (4)0.0490 (8)
O50.9903 (3)1.00736 (14)0.3069 (4)0.0395 (7)
N10.8883 (3)0.87826 (17)0.4388 (4)0.0362 (8)
N20.7034 (3)0.94476 (18)0.5757 (4)0.0382 (8)
N30.8133 (3)0.76731 (17)0.5315 (5)0.0468 (9)
N40.6295 (3)0.8392 (2)0.7042 (5)0.0494 (10)
C10.9872 (4)0.8470 (2)0.3680 (6)0.0435 (10)
H1C1.04660.87450.31350.052*
C21.0017 (4)0.7748 (2)0.3750 (6)0.0499 (11)
H21.07000.75250.32720.060*
C30.9102 (4)0.7374 (2)0.4561 (6)0.0491 (11)
H30.91640.68840.45840.059*
C40.8069 (4)0.8370 (2)0.5194 (5)0.0368 (9)
C50.7056 (4)0.8751 (2)0.6045 (5)0.0376 (9)
C60.5436 (4)0.8772 (3)0.7835 (7)0.0573 (13)
H60.48860.85390.85570.069*
C70.5319 (4)0.9492 (3)0.7641 (6)0.0546 (12)
H70.47040.97460.82010.066*
C80.6163 (4)0.9822 (2)0.6570 (6)0.0459 (11)
H80.61241.03090.64140.055*
C90.7701 (4)1.1270 (2)0.3460 (6)0.0413 (10)
C100.7927 (4)1.1167 (2)0.1584 (6)0.0442 (11)
H10A0.71791.09390.10970.053*
H10B0.79321.16380.10820.053*
C110.8904 (4)1.0823 (2)0.0863 (6)0.0409 (10)
H11A0.92431.11550.00360.049*
H11B0.85231.04480.01560.049*
C121.0022 (4)1.0491 (2)0.1772 (5)0.0370 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0438 (3)0.0255 (3)0.0444 (3)0.0014 (2)0.0122 (2)0.0028 (2)
O10.0475 (18)0.0452 (17)0.0511 (19)−0.0081 (14)0.0088 (15)−0.0032 (15)
O1W0.071 (2)0.0425 (19)0.104 (3)−0.0055 (18)0.012 (2)−0.008 (2)
O20.0617 (19)0.0287 (14)0.0479 (18)0.0054 (14)0.0112 (15)0.0025 (13)
O2W0.100 (3)0.063 (2)0.081 (3)0.028 (2)0.022 (3)0.024 (2)
O30.083 (2)0.0362 (17)0.063 (2)0.0214 (17)0.0051 (19)−0.0003 (16)
O40.0475 (18)0.0434 (17)0.057 (2)−0.0044 (14)0.0187 (16)0.0048 (15)
O50.0417 (16)0.0332 (14)0.0439 (17)−0.0001 (12)0.0055 (13)0.0063 (13)
N10.0393 (18)0.0300 (17)0.0395 (19)0.0004 (15)0.0026 (16)−0.0003 (15)
N20.0403 (18)0.0358 (18)0.039 (2)0.0019 (15)0.0066 (16)0.0009 (15)
N30.055 (2)0.0281 (18)0.057 (2)−0.0029 (16)0.001 (2)0.0058 (17)
N40.042 (2)0.049 (2)0.058 (2)−0.0074 (17)0.0105 (19)0.0130 (19)
C10.046 (2)0.041 (2)0.044 (2)−0.001 (2)0.008 (2)−0.002 (2)
C20.052 (3)0.041 (2)0.057 (3)0.010 (2)0.005 (2)−0.003 (2)
C30.062 (3)0.030 (2)0.056 (3)0.006 (2)0.003 (2)−0.001 (2)
C40.038 (2)0.033 (2)0.039 (2)−0.0051 (17)0.0001 (19)0.0064 (18)
C50.038 (2)0.037 (2)0.038 (2)−0.0028 (18)−0.0011 (19)0.0060 (18)
C60.045 (3)0.069 (3)0.059 (3)−0.003 (2)0.011 (2)0.014 (3)
C70.045 (3)0.068 (3)0.051 (3)0.005 (2)0.012 (2)0.002 (3)
C80.050 (3)0.042 (2)0.046 (3)0.010 (2)0.005 (2)0.002 (2)
C90.038 (2)0.032 (2)0.054 (3)0.0007 (18)0.006 (2)0.001 (2)
C100.044 (2)0.033 (2)0.056 (3)−0.0061 (19)0.001 (2)0.010 (2)
C110.050 (2)0.031 (2)0.042 (2)−0.0139 (19)0.003 (2)0.0073 (19)
C120.048 (2)0.0251 (19)0.039 (2)−0.0006 (18)0.008 (2)−0.0044 (18)

Geometric parameters (Å, °)

Cu1—O12.386 (3)N4—C51.323 (5)
Cu1—O21.918 (3)N4—C61.330 (6)
Cu1—O51.940 (3)C1—C21.376 (6)
Cu1—N12.017 (3)C1—H1C0.9300
Cu1—N22.012 (3)C2—C31.374 (6)
O1—H1A0.85 (4)C2—H20.9300
O1—H1B0.85 (4)C3—H30.9300
O1W—H1WA0.85 (4)C4—C51.472 (6)
O1W—H1WB0.84 (4)C6—C71.377 (7)
O2—C91.270 (5)C6—H60.9300
O2W—H2WB0.85 (4)C7—C81.388 (6)
O2W—H2WA0.85 (4)C7—H70.9300
O3—C91.239 (5)C8—H80.9300
O4—C121.224 (5)C9—C101.469 (6)
O5—C121.275 (5)C10—C111.365 (5)
N1—C41.336 (5)C10—H10A0.9700
N1—C11.343 (5)C10—H10B0.9700
N2—C51.336 (5)C11—C121.495 (6)
N2—C81.341 (5)C11—H11A0.9700
N3—C41.324 (5)C11—H11B0.9700
N3—C31.330 (5)
O2—Cu1—O594.68 (12)N3—C4—N1125.6 (4)
O2—Cu1—N290.87 (13)N3—C4—C5119.7 (3)
O5—Cu1—N2169.41 (13)N1—C4—C5114.7 (3)
O2—Cu1—N1168.87 (13)N4—C5—N2126.5 (4)
O5—Cu1—N193.13 (13)N4—C5—C4118.6 (4)
N2—Cu1—N180.22 (13)N2—C5—C4114.9 (3)
O2—Cu1—O1100.69 (12)N4—C6—C7123.2 (4)
O5—Cu1—O196.32 (12)N4—C6—H6118.4
N2—Cu1—O191.50 (12)C7—C6—H6118.4
N1—Cu1—O186.30 (12)C6—C7—C8116.8 (4)
Cu1—O1—H1A121 (4)C6—C7—H7121.6
Cu1—O1—H1B106 (3)C8—C7—H7121.6
H1A—O1—H1B109 (4)N2—C8—C7120.8 (4)
H1WA—O1W—H1WB110 (5)N2—C8—H8119.6
C9—O2—Cu1131.1 (3)C7—C8—H8119.6
H2WB—O2W—H2WA110 (6)O3—C9—O2122.1 (4)
C12—O5—Cu1128.5 (3)O3—C9—C10117.0 (4)
C4—N1—C1117.6 (3)O2—C9—C10120.9 (4)
C4—N1—Cu1114.7 (3)C11—C10—C9127.7 (4)
C1—N1—Cu1127.5 (3)C11—C10—H10A105.4
C5—N2—C8117.0 (4)C9—C10—H10A105.4
C5—N2—Cu1115.0 (3)C11—C10—H10B105.4
C8—N2—Cu1128.0 (3)C9—C10—H10B105.4
C4—N3—C3115.7 (4)H10A—C10—H10B106.0
C5—N4—C6115.7 (4)C10—C11—C12128.7 (4)
N1—C1—C2120.7 (4)C10—C11—H11A105.1
N1—C1—H1C119.6C12—C11—H11A105.1
C2—C1—H1C119.6C10—C11—H11B105.1
C3—C2—C1116.7 (4)C12—C11—H11B105.1
C3—C2—H2121.7H11A—C11—H11B105.9
C1—C2—H2121.7O4—C12—O5123.2 (4)
N3—C3—C2123.6 (4)O4—C12—C11115.7 (4)
N3—C3—H3118.2O5—C12—C11121.1 (4)
C2—C3—H3118.2
O5—Cu1—O2—C951.3 (4)C3—N3—C4—C5−177.7 (4)
N2—Cu1—O2—C9−137.8 (4)C1—N1—C4—N3−2.0 (6)
N1—Cu1—O2—C9−174.3 (6)Cu1—N1—C4—N3173.5 (4)
O1—Cu1—O2—C9−46.1 (4)C1—N1—C4—C5176.0 (4)
O2—Cu1—O5—C12−50.4 (3)Cu1—N1—C4—C5−8.5 (4)
N2—Cu1—O5—C12−171.8 (6)C6—N4—C5—N2−0.5 (7)
N1—Cu1—O5—C12137.5 (3)C6—N4—C5—C4177.1 (4)
O1—Cu1—O5—C1250.9 (3)C8—N2—C5—N40.7 (6)
O2—Cu1—N1—C443.9 (8)Cu1—N2—C5—N4177.8 (3)
O5—Cu1—N1—C4178.4 (3)C8—N2—C5—C4−177.1 (4)
N2—Cu1—N1—C46.7 (3)Cu1—N2—C5—C40.0 (5)
O1—Cu1—N1—C4−85.5 (3)N3—C4—C5—N45.8 (6)
O2—Cu1—N1—C1−141.1 (6)N1—C4—C5—N4−172.3 (4)
O5—Cu1—N1—C1−6.6 (4)N3—C4—C5—N2−176.3 (4)
N2—Cu1—N1—C1−178.3 (4)N1—C4—C5—N25.6 (5)
O1—Cu1—N1—C189.5 (4)C5—N4—C6—C70.5 (7)
O2—Cu1—N2—C5−176.8 (3)N4—C6—C7—C8−0.6 (8)
O5—Cu1—N2—C5−55.1 (8)C5—N2—C8—C7−0.8 (6)
N1—Cu1—N2—C5−3.5 (3)Cu1—N2—C8—C7−177.4 (3)
O1—Cu1—N2—C582.5 (3)C6—C7—C8—N20.8 (7)
O2—Cu1—N2—C80.0 (4)Cu1—O2—C9—O3−178.8 (3)
O5—Cu1—N2—C8121.6 (7)Cu1—O2—C9—C103.2 (6)
N1—Cu1—N2—C8173.2 (4)O3—C9—C10—C11137.1 (5)
O1—Cu1—N2—C8−100.8 (4)O2—C9—C10—C11−44.9 (7)
C4—N1—C1—C21.6 (6)C9—C10—C11—C12−3.2 (7)
Cu1—N1—C1—C2−173.3 (3)Cu1—O5—C12—O4177.3 (3)
N1—C1—C2—C30.5 (7)Cu1—O5—C12—C11−3.5 (5)
C4—N3—C3—C22.2 (7)C10—C11—C12—O4−131.7 (4)
C1—C2—C3—N3−2.5 (7)C10—C11—C12—O549.0 (6)
C3—N3—C4—N10.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O1W0.85 (4)1.89 (4)2.703 (5)162 (4)
O1—H1B···O4i0.85 (4)2.05 (4)2.903 (4)178 (4)
O1W—H1WA···O2Wii0.85 (4)1.95 (2)2.790 (6)169 (5)
O1W—H1WB···N3iii0.84 (4)2.45 (5)3.216 (5)152 (4)
O1W—H1WB···N4iii0.84 (4)2.46 (4)3.130 (5)137 (5)
O2W—H2WA···O3iii0.85 (4)2.04 (4)2.876 (6)167 (5)
O2W—H2WB···O3iv0.85 (4)1.94 (4)2.777 (5)168 (4)

Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2509).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • McCann, M., Casey, M.-T., Devereux, M., Curran, M. & Ferguson, G. (1997). Polyhedron, 15, 2547–2552.
  • Ray, M.-S., Ghosh, A., Das, A., Drew, M.-G. B., Ribas-Ariňo, J., Novoa, J. & Ribas, J. (2004). Chem. Commun. pp. 1102–1103. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, J., Li, Zh.-J., Wen, Y.-H., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Z. Anorg. Allg. Chem 630, 2731–2735.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography