PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m525.
Published online 2009 April 18. doi:  10.1107/S1600536809013427
PMCID: PMC2977581

Bis[2-(amino­meth­yl)pyridine-κ2 N,N′]bis­(thio­cyanato-κN)copper(II)

Abstract

In the title complex, [Cu(NCS)2(C6H8N2)2], the CuII atom, lying on an inversion center, adopts a Jahn–Teller distorted octahedral CuN6 coordination geometry. The two bidentate 2-amino­methyl­pyridine ligands are coordinated in a trans fashion, while the two thio­cyanate ligands are at the axial positions and coordinate to the Cu atom in a bent mode with a C—N—Cu angle of 127.49 (10)°. Inter­molecular N—H(...)N and N—H(...)S hydrogen bonds link the copper complex mol­ecules into an infinite two-dimensional network.

Related literature

For six-coordinate trans-dithio­cyanato Cu(II) complexes similar to the title complex, see: Gary et al. (2004 [triangle]); Ferrer et al. (1992 [triangle]); Gorji et al. (2001 [triangle]); Kozlowski & Hodgson (1975 [triangle]); Li & Zhang (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m525-scheme1.jpg

Experimental

Crystal data

  • [Cu(NCS)2(C6H8N2)2]
  • M r = 395.99
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m525-efi1.jpg
  • a = 9.1023 (4) Å
  • b = 9.1740 (4) Å
  • c = 9.6895 (4) Å
  • β = 91.872 (3)°
  • V = 808.69 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.62 mm−1
  • T = 150 K
  • 0.46 × 0.38 × 0.31 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.497, T max = 0.603
  • 11419 measured reflections
  • 2086 independent reflections
  • 1776 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.063
  • S = 1.13
  • 2086 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013427/pv2151sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013427/pv2151Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Science Council of Taiwan for financial support of this work.

supplementary crystallographic information

Comment

The tilte complex was readily obtained from the reaction between copper(II) acetate, 2-aminomethylpyridine, and sodium thiocyanate. The complex consists of two trans bidentate ligands and two trans thiocyanate ligands (Fig. 1). It exhibits an octahedron coordination geometry at the Cu atom which is located on the inversion center. The bent coordination of thiocyanate results in the C5—N1—Cu1 bond angle of 127.49 (10)°. The pyridine ring is twisted from the equatorial plane defined by the Cu and the four N atoms; the interplanar angle is 17.86 (8)°. Intermolecular H-bonds of the type N—H···N and N—H···S exist, linking the complex into a into a two-dimensional hydrogen bonded network (Table 1).

Six-coordinate trans-dithiocyanato Cu(II) complexes similar to the title complex have been reported in the literature (Gary et al., 2004; Ferrer et al., 1992; Gorji et al., 2001; Kozlowski & Hodgson, 1975; Li & Zhang, 2004).

Experimental

To a methanolic solution (10 ml) of Cu(O2CCH3)2.H2O (1.0 mmol, 0.199 g), a methanolic solution (10.0 ml) of 2-aminomethylpyridine (2.0 mmol, 0.207 ml) was added dropwise with stirring. Then to this mixture of solution, NaSCN (2.0 mmol, 0.162 g) in methanol (5.0 ml) was added and the mixture was stirred for 5 min. The solution was kept undisturbed. Blue crystals suitable for X-ray crystallography were obtained after one week by slow evaporation of the solvent.

Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.92, Caryl—H = 0.95, Cmethylene—H = 0.99 Å while Uiso(H) = 1.2Ueq(C or N) for all H atoms.

Figures

Fig. 1.
The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are dipicted by circles of an arbitrary radius. The unlabelled atoms are related to the labelled ones by -x, 1 - y, 1 - z.
Fig. 2.
A packing diagram of the title compound along the a axis. Hyrogen bonds are shown as dashed lines.

Crystal data

[Cu(NCS)2(C6H8N2)2]F(000) = 406
Mr = 395.99Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3360 reflections
a = 9.1023 (4) Åθ = 3.1–28.0°
b = 9.1740 (4) ŵ = 1.62 mm1
c = 9.6895 (4) ÅT = 150 K
β = 91.872 (3)°Plate, blue
V = 808.69 (6) Å30.46 × 0.38 × 0.31 mm
Z = 2

Data collection

Bruker SMART APEXII diffractometer2086 independent reflections
Radiation source: fine-focus sealed tube1776 reflections with I > 2σ
graphiteRint = 0.031
ω scansθmax = 28.7°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −12→12
Tmin = 0.497, Tmax = 0.603k = −12→12
11419 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0308P)2 + 0.2097P] where P = (Fo2 + 2Fc2)/3
2086 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.27555 (16)0.35413 (16)0.48964 (15)0.0151 (3)
C20.41671 (16)0.30420 (16)0.52349 (17)0.0187 (3)
H20.46070.23020.47010.022*
C30.49184 (16)0.36421 (17)0.63614 (17)0.0199 (3)
H30.58780.33110.66180.024*
C40.42557 (17)0.47314 (17)0.71109 (17)0.0190 (3)
H40.47590.51700.78780.023*
C50.28491 (17)0.51688 (16)0.67232 (16)0.0170 (3)
H50.23950.59170.72360.020*
C60.18680 (17)0.29582 (17)0.36793 (16)0.0188 (3)
H6A0.25130.28130.28880.023*
H6B0.14350.20050.39180.023*
C7−0.15576 (16)0.17946 (16)0.52438 (16)0.0175 (3)
Cu10.00000.50000.50000.01369 (8)
N10.20991 (13)0.45719 (14)0.56437 (13)0.0142 (2)
N20.06857 (13)0.39999 (14)0.32960 (13)0.0161 (3)
H2A−0.00870.35130.28690.019*
H2B0.10300.46800.26880.019*
N3−0.08726 (15)0.26276 (15)0.58955 (15)0.0244 (3)
S1−0.25589 (5)0.06047 (5)0.43612 (4)0.02601 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0159 (7)0.0142 (6)0.0154 (7)0.0005 (5)0.0020 (5)0.0008 (5)
C20.0166 (7)0.0171 (7)0.0225 (8)0.0036 (6)0.0032 (6)0.0011 (6)
C30.0140 (7)0.0215 (7)0.0243 (8)0.0029 (6)0.0003 (6)0.0069 (6)
C40.0167 (7)0.0224 (8)0.0177 (8)−0.0027 (6)−0.0030 (6)0.0016 (6)
C50.0164 (7)0.0187 (7)0.0159 (7)−0.0008 (6)0.0001 (6)−0.0009 (5)
C60.0187 (7)0.0201 (7)0.0176 (8)0.0052 (6)−0.0015 (6)−0.0049 (6)
C70.0168 (7)0.0183 (7)0.0175 (8)0.0037 (6)0.0027 (6)0.0057 (6)
Cu10.01194 (13)0.01631 (13)0.01273 (14)0.00240 (9)−0.00107 (9)−0.00347 (9)
N10.0130 (6)0.0152 (5)0.0143 (6)0.0009 (5)0.0004 (5)0.0000 (5)
N20.0154 (6)0.0190 (6)0.0140 (6)0.0017 (5)−0.0006 (5)−0.0019 (5)
N30.0261 (7)0.0213 (7)0.0255 (8)−0.0016 (6)−0.0033 (6)0.0040 (6)
S10.0235 (2)0.0293 (2)0.0251 (2)−0.00253 (17)−0.00159 (16)−0.00652 (17)

Geometric parameters (Å, °)

C1—N11.3430 (19)C6—N21.4775 (18)
C1—C21.393 (2)C6—H6A0.9900
C1—C61.506 (2)C6—H6B0.9900
C2—C31.383 (2)C7—N31.160 (2)
C2—H20.9500C7—S11.6440 (16)
C3—C41.385 (2)Cu1—N22.0062 (12)
C3—H30.9500Cu1—N2i2.0062 (12)
C4—C51.382 (2)Cu1—N12.0288 (12)
C4—H40.9500Cu1—N1i2.0288 (12)
C5—N11.3466 (19)N2—H2A0.9200
C5—H50.9500N2—H2B0.9200
N1—C1—C2121.85 (14)C1—C6—H6B109.8
N1—C1—C6115.83 (12)H6A—C6—H6B108.2
C2—C1—C6122.32 (13)N3—C7—S1178.26 (15)
C3—C2—C1118.90 (14)N2—Cu1—N2i180.0
C3—C2—H2120.5N2—Cu1—N181.33 (5)
C1—C2—H2120.5N2i—Cu1—N198.67 (5)
C2—C3—C4119.23 (14)N2—Cu1—N1i98.67 (5)
C2—C3—H3120.4N2i—Cu1—N1i81.33 (5)
C4—C3—H3120.4N1—Cu1—N1i180.0
C5—C4—C3118.84 (14)C1—N1—C5118.81 (13)
C5—C4—H4120.6C1—N1—Cu1113.68 (10)
C3—C4—H4120.6C5—N1—Cu1127.49 (10)
N1—C5—C4122.33 (14)C6—N2—Cu1109.43 (9)
N1—C5—H5118.8C6—N2—H2A109.8
C4—C5—H5118.8Cu1—N2—H2A109.8
N2—C6—C1109.56 (12)C6—N2—H2B109.8
N2—C6—H6A109.8Cu1—N2—H2B109.8
C1—C6—H6A109.8H2A—N2—H2B108.2
N2—C6—H6B109.8
N1—C1—C2—C3−0.9 (2)C6—C1—N1—Cu13.52 (16)
C6—C1—C2—C3179.38 (14)C4—C5—N1—C1−1.7 (2)
C1—C2—C3—C4−0.7 (2)C4—C5—N1—Cu1176.34 (11)
C2—C3—C4—C51.1 (2)N2—Cu1—N1—C1−17.99 (10)
C3—C4—C5—N10.1 (2)N2i—Cu1—N1—C1162.01 (10)
N1—C1—C6—N219.63 (18)N2—Cu1—N1—C5163.84 (13)
C2—C1—C6—N2−160.67 (14)N2i—Cu1—N1—C5−16.16 (13)
C2—C1—N1—C52.2 (2)C1—C6—N2—Cu1−33.03 (14)
C6—C1—N1—C5−178.14 (13)N1—Cu1—N2—C627.99 (10)
C2—C1—N1—Cu1−176.18 (11)N1i—Cu1—N2—C6−152.01 (10)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···N3ii0.922.273.0717 (19)145
N2—H2B···S1iii0.922.603.4628 (13)156

Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2151).

References

  • Bruker (2004). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ferrer, S., Haasnoot, J. G., Reedijk, J., Muller, E., Biagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F. & Foglia, C. (1992). J. Chem. Soc. Dalton Trans. pp. 3029–3034.
  • Gary, J. B., Kautz, J. A., Klausmeyer, K. K. & Wong, C.-W. (2004). Acta Cryst. E60, m328–m329.
  • Gorji, A., Mahmoudkhani, A. H. M. & Amirnasr, M. (2001). Inorg. Chim. Acta, 315, 133–138.
  • Kozlowski, D. L. & Hodgson, D. L. (1975). J. Chem. Soc. Dalton Trans. pp. 55–58.
  • Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1597–m1598.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography