PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m523–m524.
Published online 2009 April 18. doi:  10.1107/S1600536809013208
PMCID: PMC2977580

mer-(3,5-Dichloro-2-oxidobenzaldehyde thio­semicarbazonato-κ3 S,N 1,O)(methanol-κO)(1,10-phenanthroline-κ2 N,N′)nickel(II)

Abstract

In the title compound, [Ni(C8H5Cl2N3OS)(C12H8N2)(CH3OH)], the NiII atom is octa­hedrally coordinated by one N, one O and one S atom from a 3,5-dichloro-2-oxidobenzaldehyde thio­semicarbazonate ligand, another O atom from methanol and another two N atoms from 1,10-phenanthroline. The crystal structure is constructed by N—H(...)Cl, N—H(...)N, C—H(...)S and O—H(...)S hydrogen bonds.

Related literature

For nickel complexes with salicylic aldehyde thio­semi­carbazone ligands, see: Dapporto et al. (1984 [triangle]); Schulte et al. (1991 [triangle]); García-Reynaldos et al. (2007 [triangle]); Kolotilov et al. (2007 [triangle]); Qiu & Wu (2004 [triangle]). For related Cu(II) compounds with a distorted octahedral coordination as a result of the Jahn–Teller effect, see: García-Orozco et al. (2002 [triangle]). For bond-length data, see: Orpen et al. (1989 [triangle]). For related structures, see: Seena & Kurup (2007 [triangle]); Wang et al. (2008 [triangle]); Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m523-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H5Cl2N3OS)(C12H8N2)(CH4O)]
  • M r = 533.07
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m523-efi1.jpg
  • a = 12.058 (1) Å
  • b = 12.946 (1) Å
  • c = 14.973 (2) Å
  • β = 105.918 (1)°
  • V = 2247.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.22 mm−1
  • T = 298 K
  • 0.30 × 0.28 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.710, T max = 0.857
  • 10910 measured reflections
  • 3951 independent reflections
  • 2708 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.119
  • S = 1.06
  • 3951 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013208/im2109sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013208/im2109Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, P. R. China.

supplementary crystallographic information

Comment

As a special kind of Schiff bases, thiosemicarbazones and their metal complexes have become the subjects of intensive study because of their wide ranging biological activities, analytical applications and interesting chemical and structural properties. By now there are not many nickel complexes with salicylic aldehyde thiosemicarbazone ligands [Dapporto et al. (1984); Schulte et al. (1991); García-Reynaldos et al. (2007); Kolotilov et al. (2007); Qiu et al. (2004)]. The additional use of 1,10-phenanthroline as the third ligand depicts another structural type.

In (I), the NiII atom is coordinated by one N, one O and one S atom from the tridentate dianionic 3,5-dichlorosalicylaldehyde thiosemicarbazonato ligand, one O atom from methanol and two N atoms from phen. The six atoms form a distorted octahedral coordination sphere around the metal because of Jahn-Teller effect (García-Orozco et al., 2002). The Ni—S bond length is 2.358 (1) Å, which is very close to 2.295Å (Orpen et al. 1989). The three-dimensional network of (I) is established by N–H···Cl, N–H···N, C–H···S and O–H···S hydrogen bonds (Fig.2).

Experimental

A solution of 3,5-dichlorosalicylaldehyde (10 mmol) in EtOH (30 ml) was added dropwise to an aqueous solution (25 ml) of thiosemicarbazide (10 mmol) and 1.5 ml acetic anhydride with stirring at ca 70° C for 4.5 h. The light brown precipitate was removed by filtration and recrystallized from 1:1 (v/v) MeOH/EtOH. Then a mixture of the ligand (1 mmol) and nickel nitrate (1 mmol) in MeOH (35 ml) was stirred at ca 65° C for 2 h. After 1,10-phenanthroline (1 mmol) was added to the mixture heating was continued for another 2 h. The Ni complex was dissolved in DMF and the resulting red solution was filtrated. After 4 days, red block crystals were obtained by slow evaporation of the solvent from the filtrate.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.93-0.96Å, N-H distances of 0.86Å and O-H distances of 0.82Å,respectively, and Uiso(H) = 1.2-1.5Ueq(C), Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted.
Fig. 2.
Three-dimensional network of (I), broken lines show N–H···Cl, N–H···N, C–H···S and O–H···S hydrogen bonds.

Crystal data

[Ni(C8H5Cl2N3OS)(C12H8N2)(CH4O)]F(000) = 1088
Mr = 533.07Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.058 (1) ÅCell parameters from 3309 reflections
b = 12.946 (1) Åθ = 3.6–25.3°
c = 14.973 (2) ŵ = 1.22 mm1
β = 105.918 (1)°T = 298 K
V = 2247.6 (4) Å3Block, red
Z = 40.30 × 0.28 × 0.13 mm

Data collection

Bruker SMART CCD area-detector diffractometer3951 independent reflections
Radiation source: fine-focus sealed tube2708 reflections with I > 2σ(I)
graphiteRint = 0.040
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→14
Tmin = 0.710, Tmax = 0.857k = −15→14
10910 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0487P)2 + 1.8417P] where P = (Fo2 + 2Fc2)/3
3951 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.79152 (4)0.87614 (4)0.19294 (3)0.03473 (17)
S10.73435 (9)1.01246 (8)0.27489 (7)0.0455 (3)
Cl10.88829 (11)0.63336 (11)−0.01564 (9)0.0725 (4)
Cl21.32931 (13)0.62176 (14)0.18947 (12)0.0989 (6)
N10.9387 (3)0.8831 (2)0.2981 (2)0.0352 (7)
N20.9476 (3)0.9456 (3)0.3753 (2)0.0431 (8)
N30.8598 (3)1.0689 (3)0.4404 (2)0.0646 (12)
H3A0.91901.06940.48810.077*
H3B0.80241.10900.43850.077*
N40.6453 (3)0.8694 (2)0.0803 (2)0.0362 (7)
N50.8398 (3)0.9774 (2)0.1016 (2)0.0400 (8)
O10.8512 (2)0.7563 (2)0.13516 (18)0.0420 (7)
O20.7231 (3)0.7590 (2)0.2641 (2)0.0538 (8)
H20.72870.69800.25120.081*
C11.0316 (3)0.8325 (3)0.3000 (3)0.0394 (10)
H11.09400.84210.35190.047*
C21.0484 (3)0.7622 (3)0.2296 (3)0.0382 (9)
C30.9579 (3)0.7308 (3)0.1505 (3)0.0378 (9)
C40.9926 (4)0.6668 (3)0.0864 (3)0.0483 (11)
C51.1037 (4)0.6326 (4)0.0978 (3)0.0584 (12)
H51.12170.58980.05390.070*
C61.1881 (4)0.6634 (4)0.1761 (3)0.0579 (12)
C71.1614 (4)0.7264 (3)0.2404 (3)0.0503 (11)
H71.21940.74610.29260.060*
C80.8571 (3)1.0056 (3)0.3689 (3)0.0418 (10)
C90.5507 (4)0.8126 (3)0.0704 (3)0.0480 (11)
H90.54250.77470.12090.058*
C100.4635 (4)0.8078 (4)−0.0128 (3)0.0587 (13)
H100.39900.7665−0.01750.070*
C110.4735 (4)0.8640 (3)−0.0866 (3)0.0560 (13)
H110.41540.8615−0.14230.067*
C120.5710 (4)0.9260 (3)−0.0794 (3)0.0460 (11)
C130.6555 (3)0.9246 (3)0.0063 (3)0.0371 (9)
C140.7589 (3)0.9836 (3)0.0181 (3)0.0385 (9)
C150.7722 (4)1.0463 (3)−0.0550 (3)0.0501 (11)
C160.8737 (5)1.1054 (4)−0.0371 (3)0.0611 (13)
H160.88601.1489−0.08290.073*
C170.9543 (4)1.0995 (4)0.0467 (4)0.0631 (14)
H171.02131.13870.05880.076*
C180.9340 (4)1.0331 (4)0.1140 (3)0.0532 (12)
H180.99001.02810.17060.064*
C190.5891 (4)0.9883 (4)−0.1528 (3)0.0591 (13)
H190.53390.9884−0.21010.071*
C200.6836 (5)1.0465 (4)−0.1410 (3)0.0614 (13)
H200.69181.0879−0.18960.074*
C210.6611 (6)0.7670 (5)0.3301 (5)0.108 (2)
H21A0.71220.78700.38880.162*
H21B0.62670.70150.33650.162*
H21C0.60170.81810.31050.162*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0340 (3)0.0319 (3)0.0326 (3)0.0002 (2)−0.0005 (2)−0.0013 (2)
S10.0426 (6)0.0409 (6)0.0424 (6)0.0096 (5)−0.0065 (5)−0.0087 (5)
Cl10.0662 (8)0.0739 (9)0.0733 (9)−0.0054 (7)0.0119 (6)−0.0356 (7)
Cl20.0624 (9)0.1247 (14)0.1059 (12)0.0483 (9)0.0165 (8)−0.0035 (10)
N10.0361 (18)0.0347 (18)0.0302 (16)0.0029 (15)0.0015 (13)0.0019 (14)
N20.043 (2)0.044 (2)0.0340 (18)0.0084 (16)−0.0028 (15)−0.0093 (15)
N30.060 (2)0.074 (3)0.047 (2)0.022 (2)−0.0076 (18)−0.026 (2)
N40.0354 (18)0.0324 (18)0.0366 (18)0.0010 (15)0.0028 (14)−0.0042 (15)
N50.0381 (18)0.0372 (19)0.0400 (19)−0.0003 (15)0.0025 (15)0.0009 (15)
O10.0351 (16)0.0375 (16)0.0496 (16)−0.0010 (12)0.0051 (12)−0.0068 (13)
O20.071 (2)0.0428 (18)0.0553 (19)−0.0042 (16)0.0301 (16)0.0033 (15)
C10.034 (2)0.045 (2)0.031 (2)0.0009 (19)−0.0040 (17)0.0041 (18)
C20.041 (2)0.033 (2)0.039 (2)0.0036 (18)0.0088 (18)0.0083 (17)
C30.044 (2)0.027 (2)0.044 (2)−0.0016 (18)0.0137 (19)0.0038 (17)
C40.053 (3)0.035 (2)0.056 (3)−0.001 (2)0.012 (2)−0.007 (2)
C50.064 (3)0.047 (3)0.070 (3)0.011 (2)0.028 (3)−0.007 (2)
C60.047 (3)0.058 (3)0.069 (3)0.018 (2)0.016 (2)0.009 (3)
C70.046 (3)0.051 (3)0.050 (3)0.011 (2)0.006 (2)0.010 (2)
C80.040 (2)0.041 (2)0.037 (2)0.0004 (19)−0.0015 (18)−0.0050 (18)
C90.043 (3)0.042 (3)0.056 (3)−0.003 (2)0.008 (2)−0.006 (2)
C100.038 (3)0.054 (3)0.070 (3)−0.003 (2)−0.009 (2)−0.013 (3)
C110.047 (3)0.050 (3)0.053 (3)0.011 (2)−0.017 (2)−0.016 (2)
C120.049 (3)0.045 (3)0.035 (2)0.010 (2)−0.0034 (19)−0.0093 (19)
C130.043 (2)0.030 (2)0.034 (2)0.0076 (18)0.0038 (18)−0.0036 (17)
C140.046 (2)0.033 (2)0.035 (2)0.0056 (18)0.0080 (18)−0.0007 (17)
C150.058 (3)0.044 (3)0.049 (3)0.008 (2)0.016 (2)0.007 (2)
C160.076 (4)0.052 (3)0.063 (3)0.004 (3)0.031 (3)0.018 (2)
C170.060 (3)0.051 (3)0.077 (4)−0.013 (2)0.017 (3)0.009 (3)
C180.045 (3)0.054 (3)0.054 (3)−0.009 (2)0.003 (2)0.002 (2)
C190.070 (3)0.061 (3)0.036 (2)0.015 (3)−0.004 (2)−0.002 (2)
C200.080 (4)0.064 (3)0.037 (3)0.019 (3)0.012 (2)0.012 (2)
C210.132 (6)0.090 (5)0.108 (5)−0.016 (4)0.043 (5)0.021 (4)

Geometric parameters (Å, °)

Ni1—O12.004 (3)C5—C61.383 (6)
Ni1—N12.026 (3)C5—H50.9300
Ni1—N42.081 (3)C6—C71.366 (6)
Ni1—N52.089 (3)C7—H70.9300
Ni1—O22.145 (3)C9—C101.393 (6)
Ni1—S12.3578 (11)C9—H90.9300
S1—C81.743 (4)C10—C111.357 (7)
Cl1—C41.746 (4)C10—H100.9300
Cl2—C61.745 (5)C11—C121.403 (6)
N1—C11.290 (5)C11—H110.9300
N1—N21.391 (4)C12—C131.403 (5)
N2—C81.321 (5)C12—C191.427 (6)
N3—C81.342 (5)C13—C141.430 (5)
N3—H3A0.8600C14—C151.406 (6)
N3—H3B0.8600C15—C161.405 (6)
N4—C91.331 (5)C15—C201.430 (6)
N4—C131.353 (5)C16—C171.362 (6)
N5—C181.314 (5)C16—H160.9300
N5—C141.362 (5)C17—C181.396 (6)
O1—C31.286 (4)C17—H170.9300
O2—C211.398 (7)C18—H180.9300
O2—H20.8200C19—C201.338 (7)
C1—C21.448 (5)C19—H190.9300
C1—H10.9300C20—H200.9300
C2—C71.407 (5)C21—H21A0.9600
C2—C31.433 (5)C21—H21B0.9600
C3—C41.415 (6)C21—H21C0.9600
C4—C51.376 (6)
O1—Ni1—N191.59 (11)C5—C6—Cl2118.4 (4)
O1—Ni1—N486.69 (11)C6—C7—C2121.6 (4)
N1—Ni1—N4177.11 (12)C6—C7—H7119.2
O1—Ni1—N590.32 (12)C2—C7—H7119.2
N1—Ni1—N597.97 (12)N2—C8—N3117.6 (3)
N4—Ni1—N579.74 (12)N2—C8—S1126.2 (3)
O1—Ni1—O284.23 (11)N3—C8—S1116.3 (3)
N1—Ni1—O291.15 (12)N4—C9—C10122.5 (4)
N4—Ni1—O290.98 (12)N4—C9—H9118.7
N5—Ni1—O2169.51 (12)C10—C9—H9118.7
O1—Ni1—S1174.34 (8)C11—C10—C9119.4 (4)
N1—Ni1—S183.20 (9)C11—C10—H10120.3
N4—Ni1—S198.62 (9)C9—C10—H10120.3
N5—Ni1—S192.58 (10)C10—C11—C12120.2 (4)
O2—Ni1—S193.65 (9)C10—C11—H11119.9
C8—S1—Ni194.43 (14)C12—C11—H11119.9
C1—N1—N2114.1 (3)C13—C12—C11116.5 (4)
C1—N1—Ni1124.4 (3)C13—C12—C19119.0 (4)
N2—N1—Ni1121.5 (2)C11—C12—C19124.4 (4)
C8—N2—N1114.1 (3)N4—C13—C12123.3 (4)
C8—N3—H3A120.0N4—C13—C14116.9 (3)
C8—N3—H3B120.0C12—C13—C14119.7 (4)
H3A—N3—H3B120.0N5—C14—C15122.9 (4)
C9—N4—C13118.0 (3)N5—C14—C13117.5 (3)
C9—N4—Ni1128.5 (3)C15—C14—C13119.6 (4)
C13—N4—Ni1113.3 (2)C16—C15—C14116.4 (4)
C18—N5—C14118.1 (4)C16—C15—C20124.5 (4)
C18—N5—Ni1129.5 (3)C14—C15—C20119.0 (4)
C14—N5—Ni1112.3 (3)C17—C16—C15120.6 (4)
C3—O1—Ni1125.6 (2)C17—C16—H16119.7
C21—O2—Ni1130.7 (3)C15—C16—H16119.7
C21—O2—H2109.5C16—C17—C18118.5 (4)
Ni1—O2—H2119.7C16—C17—H17120.7
N1—C1—C2126.6 (3)C18—C17—H17120.7
N1—C1—H1116.7N5—C18—C17123.4 (4)
C2—C1—H1116.7N5—C18—H18118.3
C7—C2—C3119.7 (4)C17—C18—H18118.3
C7—C2—C1116.6 (4)C20—C19—C12121.5 (4)
C3—C2—C1123.6 (4)C20—C19—H19119.3
O1—C3—C4119.8 (4)C12—C19—H19119.3
O1—C3—C2124.9 (4)C19—C20—C15121.1 (4)
C4—C3—C2115.3 (4)C19—C20—H20119.5
C5—C4—C3124.2 (4)C15—C20—H20119.5
C5—C4—Cl1118.2 (3)O2—C21—H21A109.5
C3—C4—Cl1117.5 (3)O2—C21—H21B109.5
C4—C5—C6118.5 (4)H21A—C21—H21B109.5
C4—C5—H5120.7O2—C21—H21C109.5
C6—C5—H5120.7H21A—C21—H21C109.5
C7—C6—C5120.6 (4)H21B—C21—H21C109.5
C7—C6—Cl2121.0 (4)
O1—Ni1—S1—C817.3 (9)C7—C2—C3—C4−2.1 (5)
N1—Ni1—S1—C8−5.61 (16)C1—C2—C3—C4176.2 (4)
N4—Ni1—S1—C8176.66 (17)O1—C3—C4—C5−177.9 (4)
N5—Ni1—S1—C8−103.33 (16)C2—C3—C4—C52.0 (6)
O2—Ni1—S1—C885.12 (16)O1—C3—C4—Cl14.5 (5)
O1—Ni1—N1—C110.5 (3)C2—C3—C4—Cl1−175.6 (3)
N4—Ni1—N1—C1−43 (3)C3—C4—C5—C6−1.0 (7)
N5—Ni1—N1—C1−80.1 (3)Cl1—C4—C5—C6176.6 (4)
O2—Ni1—N1—C194.7 (3)C4—C5—C6—C7−0.1 (7)
S1—Ni1—N1—C1−171.7 (3)C4—C5—C6—Cl2−178.9 (4)
O1—Ni1—N1—N2−170.2 (3)C5—C6—C7—C2−0.1 (7)
N4—Ni1—N1—N2137 (2)Cl2—C6—C7—C2178.7 (3)
N5—Ni1—N1—N299.2 (3)C3—C2—C7—C61.3 (6)
O2—Ni1—N1—N2−86.0 (3)C1—C2—C7—C6−177.1 (4)
S1—Ni1—N1—N27.6 (3)N1—N2—C8—N3−179.3 (4)
C1—N1—N2—C8173.2 (3)N1—N2—C8—S1−0.6 (5)
Ni1—N1—N2—C8−6.2 (4)Ni1—S1—C8—N25.3 (4)
O1—Ni1—N4—C987.0 (3)Ni1—S1—C8—N3−175.9 (3)
N1—Ni1—N4—C9140 (2)C13—N4—C9—C100.4 (6)
N5—Ni1—N4—C9177.9 (4)Ni1—N4—C9—C10−173.5 (3)
O2—Ni1—N4—C92.8 (3)N4—C9—C10—C11−1.0 (7)
S1—Ni1—N4—C9−91.0 (3)C9—C10—C11—C120.3 (7)
O1—Ni1—N4—C13−87.1 (3)C10—C11—C12—C130.9 (6)
N1—Ni1—N4—C13−34 (3)C10—C11—C12—C19−179.6 (4)
N5—Ni1—N4—C133.8 (3)C9—N4—C13—C120.9 (6)
O2—Ni1—N4—C13−171.3 (3)Ni1—N4—C13—C12175.7 (3)
S1—Ni1—N4—C1394.8 (2)C9—N4—C13—C14−179.0 (3)
O1—Ni1—N5—C18−96.3 (4)Ni1—N4—C13—C14−4.1 (4)
N1—Ni1—N5—C18−4.6 (4)C11—C12—C13—N4−1.6 (6)
N4—Ni1—N5—C18177.2 (4)C19—C12—C13—N4178.9 (4)
O2—Ni1—N5—C18−154.8 (6)C11—C12—C13—C14178.3 (4)
S1—Ni1—N5—C1878.9 (4)C19—C12—C13—C14−1.2 (6)
O1—Ni1—N5—C1483.7 (3)C18—N5—C14—C150.4 (6)
N1—Ni1—N5—C14175.4 (3)Ni1—N5—C14—C15−179.6 (3)
N4—Ni1—N5—C14−2.8 (3)C18—N5—C14—C13−178.5 (4)
O2—Ni1—N5—C1425.2 (8)Ni1—N5—C14—C131.5 (4)
S1—Ni1—N5—C14−101.1 (3)N4—C13—C14—N51.8 (5)
N1—Ni1—O1—C3−20.1 (3)C12—C13—C14—N5−178.1 (4)
N4—Ni1—O1—C3157.6 (3)N4—C13—C14—C15−177.2 (4)
N5—Ni1—O1—C377.9 (3)C12—C13—C14—C153.0 (6)
O2—Ni1—O1—C3−111.1 (3)N5—C14—C15—C16−1.5 (6)
S1—Ni1—O1—C3−42.8 (10)C13—C14—C15—C16177.4 (4)
O1—Ni1—O2—C21178.3 (5)N5—C14—C15—C20178.8 (4)
N1—Ni1—O2—C2186.9 (5)C13—C14—C15—C20−2.3 (6)
N4—Ni1—O2—C21−95.1 (5)C14—C15—C16—C171.0 (7)
N5—Ni1—O2—C21−122.7 (7)C20—C15—C16—C17−179.3 (5)
S1—Ni1—O2—C213.6 (5)C15—C16—C17—C180.3 (7)
N2—N1—C1—C2−179.7 (4)C14—N5—C18—C171.1 (7)
Ni1—N1—C1—C2−0.3 (6)Ni1—N5—C18—C17−178.9 (3)
N1—C1—C2—C7171.7 (4)C16—C17—C18—N5−1.5 (8)
N1—C1—C2—C3−6.6 (6)C13—C12—C19—C20−1.2 (7)
Ni1—O1—C3—C4−160.4 (3)C11—C12—C19—C20179.3 (4)
Ni1—O1—C3—C219.7 (5)C12—C19—C20—C151.9 (7)
C7—C2—C3—O1177.8 (4)C16—C15—C20—C19−179.8 (5)
C1—C2—C3—O1−3.9 (6)C14—C15—C20—C19−0.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···S1i0.822.493.310 (3)174
N3—H3A···N2ii0.862.243.087 (4)170
N3—H3B···Cl1iii0.862.863.573 (2)142
C11—H11···S1iv0.932.813.593 (5)142

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+2, −y+2, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2109).

References

  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dapporto, P., De Munno, G. & Tomlinson, A. G. (1984). J. Chem. Res.40, 501–502.
  • García-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramírez-Rosales, D., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2002). J. Mol. Struct.604, 57–64.
  • García-Reynaldos, P. X., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Supramol. Chem. 19, 613–619.
  • Kolotilov, S. V., Cador, O., Golhen, S., Shvets, O., Ilyin, V. G., Pavlishchuk, V. V. & Ouahab, L. (2007). Inorg. Chim. Acta, 360, 1883–1889.
  • Orpen, A. G., Brammer, L. & Allen, F. H. (1989). J. Chem. Soc. Dalton Trans. pp. S1–84.
  • Qiu, X.-H. & Wu, H.-Y. (2004). Acta Cryst. E60, m1151–m1152.
  • Schulte, G., Luo, X.-L., Crabtree, R. H. & Zimmer, M. (1991). Angew. Chem. Int. Ed. Engl.30, 193–194.
  • Seena, E. B. & Kurup, M. R. P. (2007). Polyhedron, 26, 829–836.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y., Liu, Z. & Gao, J.-Y. (2008). Acta Cryst. E64, m633–m634. [PMC free article] [PubMed]
  • Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535–m536.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography