PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m522.
Published online 2009 April 18. doi:  10.1107/S1600536809010174
PMCID: PMC2977579

[μ-10,21-Dimethyl-3,6,14,17-tetra­aza­tricyclo­[17.3.1.18,12]tetra­cosa-1(23),8(24),9,11,19,21-hexa­ene-23,24-diolato-κ8 N 3,N 6,O 23,O 24:N 14,N 17,O 23,O 24]bis­[(nitrato-κ2 O,O′)nickel(II)]

Abstract

In the title centrosymmetric dinuclear nickel complex, [Ni2(C22H30N4O2)(NO3)2], each of the two NiII atoms has a distorted octa­hedral geometry, defined by two N atoms and two O atoms from the macrocyclic ligand and two O atoms from a chelating nitrate anion. The two Ni atoms are bridged by two phenolate O atoms, forming a four-membered Ni2O2 ring.

Related literature

For general background, see: Caldwell & Crumbliss (1998 [triangle]); Rosa et al. (1998 [triangle]). For related structures, see: Aromi et al. (2002 [triangle]). For the ligand synthesis, see: Mandal & Nag (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m522-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C22H30N4O2)(NO3)2]
  • M r = 623.90
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-65-0m522-efi4.jpg
  • a = 25.020 (5) Å
  • c = 10.616 (5) Å
  • V = 5755 (3) Å3
  • Z = 9
  • Mo Kα radiation
  • μ = 1.53 mm−1
  • T = 293 K
  • 0.40 × 0.30 × 0.25 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.495, T max = 0.609 (expected range = 0.554–0.682)
  • 9432 measured reflections
  • 2213 independent reflections
  • 1745 reflections with I > 2σ(I)
  • R int = 0.107

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.117
  • S = 1.03
  • 2213 reflections
  • 178 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.06 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010174/hy2188sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010174/hy2188Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320), the Fok Ying Tung Education Foundation and the Analysis and Testing Foundation of Northeast Normal University for support.

supplementary crystallographic information

Comment

Crown ether compounds have attracted much interest as a result of their significance in biological transport systems (Caldwell & Crumbliss, 1998). In addition, crown ether compounds are found to have functions in selective molecular recognition (Rosa et al., 1998). To further widen the scope of applications of crown ether, there is a need to prepare new series of crown ether compounds. In this work, a new dinuclear nickel(II) compound has been synthesized and its struture is reported here.

As shown in Fig. 1, the title compound is a centrosymmetric dinuclear nickel complex. The coordination environment around each NiII atom is distorted octahedral, with one N atom and one O atom from the macrocyclic ligand and two O atoms from the nitrate anion occupying the equatorial plane, and the other N atom and O atom from the ligand occupying the axial positions. In the complex molecule, two Ni atoms are bridged by two phenolate O atoms, generating a four-membered Ni2O2 ring, with a Ni···Ni distance of 2.9737 (10) Å. The Ni—O and Ni—N distances are normal (Aromi et al., 2002).

Experimental

The macrocyclic ligand, C22H32N4O2 (H2L), was prepared by the reported procedure (Mandal & Nag, 1986). A mixture of H2L (0.10 g, 0.26 mmol) and Ni(NO3)2.6H2O (0.15 g, 0.52 mmol) in methanol (20 ml) was stirred for 10 min. The resulting solution was filtered. Green single crystals were obtained by slow evaporation of the filtrate at room temperature (yield 56%).

Refinement

H atoms bound to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso = 1.2(1.5 for methyl)Ueq(C). The imino H atoms were located in a difference Fourier map and refined with Uiso(H) = 0.128 Å2. The highest residual electron density was found 1.03Å from Ni1 and the deepest hole 0.76 Å from Ni1.

Figures

Fig. 1.
Molecular structure of the title compound. Displacement ellipsoids are draw at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 2/3, -y + 1/3, -z + 1/3.]

Crystal data

[Ni2(C22H30N4O2)(NO3)2]Dx = 1.620 Mg m3
Mr = 623.90Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3Cell parameters from 3000 reflections
Hall symbol: -R 3θ = 2.4–28.4°
a = 25.020 (5) ŵ = 1.53 mm1
c = 10.616 (5) ÅT = 293 K
V = 5755 (3) Å3Block, green
Z = 90.40 × 0.30 × 0.25 mm
F(000) = 2916

Data collection

Bruker APEX CCD diffractometer2213 independent reflections
Radiation source: fine-focus sealed tube1745 reflections with I > 2σ(I)
graphiteRint = 0.107
[var phi] and ω scansθmax = 24.9°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→29
Tmin = 0.495, Tmax = 0.609k = −29→23
9432 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3
2213 reflections(Δ/σ)max = 0.007
178 parametersΔρmax = 1.06 e Å3
1 restraintΔρmin = −0.35 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.355561 (19)0.13534 (2)0.25357 (4)0.03150 (19)
C10.04882 (19)−0.0620 (2)0.3314 (4)0.0658 (13)
H1A0.0488−0.07700.41470.099*
H1B0.0372−0.09480.27170.099*
H1C0.0199−0.04750.32760.099*
C20.11262 (17)−0.00973 (17)0.3005 (3)0.0431 (9)
C30.12561 (16)0.01995 (17)0.1862 (3)0.0410 (9)
H30.09470.00560.12550.049*
C40.18315 (15)0.07079 (16)0.1570 (3)0.0353 (8)
C50.22847 (15)0.09460 (15)0.2510 (3)0.0347 (8)
C60.16018 (17)0.01062 (17)0.3868 (3)0.0446 (9)
H60.1536−0.01110.46170.054*
C70.21738 (16)0.06230 (16)0.3656 (3)0.0374 (8)
C80.26663 (17)0.08766 (18)0.4652 (3)0.0443 (9)
H8A0.27460.12840.48920.053*
H8B0.25150.06140.53910.053*
C90.37778 (18)0.13034 (17)0.5104 (3)0.0430 (9)
H9A0.41120.12210.49490.052*
H9B0.36460.11960.59720.052*
C100.40046 (18)0.19842 (17)0.4892 (3)0.0421 (9)
H10A0.37040.20850.52240.050*
H10B0.43900.22300.53420.050*
C110.47350 (15)0.23666 (16)0.3077 (3)0.0383 (8)
H11A0.48240.20310.30910.046*
H11B0.50220.26850.36440.046*
N10.32528 (14)0.09201 (14)0.4244 (3)0.0377 (7)
N20.41009 (14)0.21377 (13)0.3532 (2)0.0355 (7)
N30.37310 (14)0.05216 (15)0.1596 (3)0.0479 (8)
O10.28230 (10)0.14687 (10)0.23716 (19)0.0342 (5)
O20.41509 (12)0.09599 (12)0.2220 (2)0.0455 (6)
O30.32302 (12)0.05220 (12)0.1480 (2)0.0459 (6)
O40.38022 (15)0.01126 (15)0.1141 (4)0.0853 (11)
HN10.320 (3)0.055 (3)0.423 (6)0.128*
HN20.401 (3)0.242 (2)0.336 (6)0.128*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0299 (3)0.0299 (3)0.0353 (3)0.0154 (2)−0.00202 (16)0.00065 (16)
C10.041 (3)0.060 (3)0.081 (3)0.014 (2)0.014 (2)0.004 (2)
C20.037 (2)0.035 (2)0.052 (2)0.0137 (17)0.0119 (16)−0.0027 (16)
C30.033 (2)0.038 (2)0.055 (2)0.0200 (18)−0.0023 (16)−0.0069 (16)
C40.0299 (19)0.0322 (19)0.0451 (18)0.0165 (16)0.0011 (14)−0.0002 (14)
C50.0322 (19)0.033 (2)0.0424 (18)0.0193 (17)0.0038 (14)−0.0001 (14)
C60.044 (2)0.042 (2)0.049 (2)0.022 (2)0.0114 (17)0.0067 (16)
C70.037 (2)0.037 (2)0.0402 (18)0.0193 (17)0.0053 (15)0.0017 (14)
C80.043 (2)0.051 (2)0.0380 (18)0.024 (2)0.0040 (15)0.0054 (16)
C90.047 (2)0.045 (2)0.0366 (18)0.0226 (19)−0.0053 (15)0.0029 (15)
C100.048 (2)0.043 (2)0.0359 (18)0.0227 (19)−0.0046 (15)−0.0049 (15)
C110.033 (2)0.034 (2)0.049 (2)0.0181 (17)−0.0105 (15)−0.0059 (15)
N10.0404 (18)0.0370 (18)0.0381 (14)0.0211 (16)−0.0010 (12)0.0024 (13)
N20.0366 (17)0.0327 (17)0.0383 (15)0.0182 (15)−0.0035 (12)−0.0001 (12)
N30.0349 (19)0.040 (2)0.067 (2)0.0180 (16)−0.0012 (15)−0.0111 (16)
O10.0289 (13)0.0311 (13)0.0408 (12)0.0137 (11)−0.0007 (10)0.0025 (10)
O20.0341 (14)0.0377 (15)0.0634 (16)0.0171 (13)−0.0070 (12)−0.0076 (12)
O30.0329 (15)0.0434 (16)0.0570 (15)0.0159 (13)−0.0059 (11)−0.0075 (11)
O40.058 (2)0.062 (2)0.139 (3)0.0324 (18)−0.0003 (19)−0.048 (2)

Geometric parameters (Å, °)

Ni1—O12.000 (2)C7—C81.502 (5)
Ni1—O1i2.006 (2)C8—N11.481 (5)
Ni1—N22.038 (3)C8—H8A0.9700
Ni1—N12.054 (3)C8—H8B0.9700
Ni1—O32.134 (3)C9—N11.489 (4)
Ni1—O22.183 (3)C9—C101.519 (5)
Ni1—Ni1i2.9737 (10)C9—H9A0.9700
C1—C21.510 (5)C9—H9B0.9700
C1—H1A0.9600C10—N21.483 (4)
C1—H1B0.9600C10—H10A0.9700
C1—H1C0.9600C10—H10B0.9700
C2—C31.374 (5)C11—N21.473 (4)
C2—C61.382 (5)C11—C4i1.505 (5)
C3—C41.398 (5)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.400 (5)N1—HN10.87 (6)
C4—C11i1.505 (5)N2—HN20.86 (6)
C5—O11.336 (4)N3—O41.223 (4)
C5—C71.408 (5)N3—O31.260 (4)
C6—C71.386 (5)N3—O21.262 (4)
C6—H60.9300
O1—Ni1—O1i84.17 (9)N1—C8—C7113.5 (3)
O1—Ni1—N297.29 (10)N1—C8—H8A108.9
O1i—Ni1—N287.95 (10)C7—C8—H8A108.9
O1—Ni1—N191.74 (10)N1—C8—H8B108.9
O1i—Ni1—N1172.81 (10)C7—C8—H8B108.9
N2—Ni1—N186.72 (12)H8A—C8—H8B107.7
O1—Ni1—O399.46 (9)N1—C9—C10110.3 (3)
O1i—Ni1—O391.39 (10)N1—C9—H9A109.6
N2—Ni1—O3163.09 (11)C10—C9—H9A109.6
N1—Ni1—O395.11 (11)N1—C9—H9B109.6
O1—Ni1—O2158.83 (9)C10—C9—H9B109.6
O1i—Ni1—O292.93 (9)H9A—C9—H9B108.1
N2—Ni1—O2103.57 (11)N2—C10—C9110.8 (3)
N1—Ni1—O292.99 (11)N2—C10—H10A109.5
O3—Ni1—O259.57 (10)C9—C10—H10A109.5
O1—Ni1—Ni1i42.16 (6)N2—C10—H10B109.5
O1i—Ni1—Ni1i42.01 (6)C9—C10—H10B109.5
N2—Ni1—Ni1i93.51 (8)H10A—C10—H10B108.1
N1—Ni1—Ni1i133.62 (9)N2—C11—C4i112.7 (3)
O3—Ni1—Ni1i97.29 (7)N2—C11—H11A109.0
O2—Ni1—Ni1i131.44 (7)C4i—C11—H11A109.0
C2—C1—H1A109.5N2—C11—H11B109.0
C2—C1—H1B109.5C4i—C11—H11B109.0
H1A—C1—H1B109.5H11A—C11—H11B107.8
C2—C1—H1C109.5C8—N1—C9113.0 (3)
H1A—C1—H1C109.5C8—N1—Ni1112.8 (2)
H1B—C1—H1C109.5C9—N1—Ni1103.2 (2)
C3—C2—C6117.3 (3)C8—N1—HN1108 (4)
C3—C2—C1121.5 (4)C9—N1—HN1108 (4)
C6—C2—C1121.2 (4)Ni1—N1—HN1112 (4)
C2—C3—C4123.0 (3)C11—N2—C10115.1 (3)
C2—C3—H3118.5C11—N2—Ni1106.0 (2)
C4—C3—H3118.5C10—N2—Ni1108.2 (2)
C3—C4—C5118.4 (3)C11—N2—HN2107 (4)
C3—C4—C11i118.1 (3)C10—N2—HN2110 (4)
C5—C4—C11i123.5 (3)Ni1—N2—HN2110 (4)
O1—C5—C4122.9 (3)O4—N3—O3121.5 (3)
O1—C5—C7118.0 (3)O4—N3—O2121.9 (3)
C4—C5—C7119.1 (3)O3—N3—O2116.6 (3)
C2—C6—C7122.2 (3)C5—O1—Ni1113.40 (19)
C2—C6—H6118.9C5—O1—Ni1i125.52 (19)
C7—C6—H6118.9Ni1—O1—Ni1i95.83 (9)
C6—C7—C5119.4 (3)N3—O2—Ni190.8 (2)
C6—C7—C8121.7 (3)N3—O3—Ni193.11 (19)
C5—C7—C8118.7 (3)
C6—C2—C3—C4−3.1 (5)O2—Ni1—N2—C1132.8 (2)
C1—C2—C3—C4176.2 (4)Ni1i—Ni1—N2—C11−101.34 (19)
C2—C3—C4—C5−3.7 (5)O1—Ni1—N2—C1092.5 (2)
C2—C3—C4—C11i175.9 (3)O1i—Ni1—N2—C10176.3 (2)
C3—C4—C5—O1−172.4 (3)N1—Ni1—N2—C101.1 (2)
C11i—C4—C5—O18.1 (5)O3—Ni1—N2—C10−95.6 (4)
C3—C4—C5—C77.8 (5)O2—Ni1—N2—C10−91.1 (2)
C11i—C4—C5—C7−171.7 (3)Ni1i—Ni1—N2—C10134.7 (2)
C3—C2—C6—C75.8 (5)C4—C5—O1—Ni1−120.4 (3)
C1—C2—C6—C7−173.5 (4)C7—C5—O1—Ni159.4 (3)
C2—C6—C7—C5−1.7 (5)C4—C5—O1—Ni1i−4.0 (4)
C2—C6—C7—C8173.8 (3)C7—C5—O1—Ni1i175.8 (2)
O1—C5—C7—C6174.9 (3)O1i—Ni1—O1—C5132.9 (2)
C4—C5—C7—C6−5.2 (5)N2—Ni1—O1—C5−139.9 (2)
O1—C5—C7—C8−0.7 (5)N1—Ni1—O1—C5−53.0 (2)
C4—C5—C7—C8179.1 (3)O3—Ni1—O1—C542.4 (2)
C6—C7—C8—N1123.4 (4)O2—Ni1—O1—C549.8 (3)
C5—C7—C8—N1−61.0 (4)Ni1i—Ni1—O1—C5132.9 (2)
N1—C9—C10—N2−48.9 (4)O1i—Ni1—O1—Ni1i0.0
C7—C8—N1—C9166.4 (3)N2—Ni1—O1—Ni1i87.17 (11)
C7—C8—N1—Ni149.9 (4)N1—Ni1—O1—Ni1i174.08 (11)
C10—C9—N1—C8−76.0 (4)O3—Ni1—O1—Ni1i−90.44 (10)
C10—C9—N1—Ni146.1 (3)O2—Ni1—O1—Ni1i−83.0 (3)
N2—Ni1—N1—C896.4 (2)O4—N3—O2—Ni1−179.5 (4)
O3—Ni1—N1—C8−100.4 (2)O3—N3—O2—Ni1−0.4 (3)
O2—Ni1—N1—C8−160.1 (2)O1—Ni1—O2—N3−8.2 (4)
Ni1i—Ni1—N1—C84.7 (3)O1i—Ni1—O2—N3−89.6 (2)
N2—Ni1—N1—C9−25.8 (2)N2—Ni1—O2—N3−178.2 (2)
O3—Ni1—N1—C9137.3 (2)N1—Ni1—O2—N394.4 (2)
O2—Ni1—N1—C977.6 (2)O3—Ni1—O2—N30.24 (19)
Ni1i—Ni1—N1—C9−117.5 (2)Ni1i—Ni1—O2—N3−71.0 (2)
C4i—C11—N2—C10−169.3 (3)O4—N3—O3—Ni1179.5 (4)
C4i—C11—N2—Ni171.2 (3)O2—N3—O3—Ni10.4 (3)
C9—C10—N2—C11−94.0 (4)O1—Ni1—O3—N3176.7 (2)
C9—C10—N2—Ni124.3 (4)O1i—Ni1—O3—N392.3 (2)
O1—Ni1—N2—C11−143.54 (19)N2—Ni1—O3—N34.8 (5)
O1i—Ni1—N2—C11−59.7 (2)N1—Ni1—O3—N3−90.7 (2)
N1—Ni1—N2—C11125.1 (2)O2—Ni1—O3—N3−0.24 (19)
O3—Ni1—N2—C1128.3 (5)Ni1i—Ni1—O3—N3134.08 (19)

Symmetry codes: (i) −x+2/3, −y+1/3, −z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2188).

References

  • Aromi, G., Gamez, P., Roubeau, O., Carrero-Berzal, P., Kooijrnan, H. L., Spek, A. L., Driesser, W. & Reeddijk, J. (2002). Eur. J. Inorg. Chem.5, 1046–1048.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Caldwell, D. C. & Crumbliss, L. A. (1998). Inorg. Chem.37, 1906–1912.
  • Mandal, S. K. & Nag, K. (1986). J. Org. Chem.51, 3900–3902.
  • Rosa, T. D., Young, G. V. & Coucouvanis, D. (1998). Inorg. Chem.37, 5042–5043.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography