PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m510.
Published online 2009 April 10. doi:  10.1107/S1600536809012562
PMCID: PMC2977571

Poly[di-μ2-acetato-diaquabis(2,2′-bi­pyridine)bis(μ3-5-nitroisophthalato)tricobalt(II)]

Abstract

The title complex, [Co3(C8H3NO6)2(C2H3O2)2(C10H8N2)2(H2O)2], was synthesized under hydro­thermal conditions. The structure features a centrosymmetric complex with three CoII centres, one of which is located on a centre of inversion. The Co centres are coordinated in a distorted octa­hedral geometry. The bipyridine ligands are bonded to just one Co centre in a chelating mode, whereas the 5-nitro­isophthalate and acetate ions are bonded to two different Co atoms. The crystal structure is stabilized by O—H(...)O hydrogen bonds.

Related literature

For related structures, see: He et al. (2004 [triangle], 2005 [triangle]); Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m510-scheme1.jpg

Experimental

Crystal data

  • [Co3(C8H3NO6)2(C2H3O2)2(C10H8N2)2(H2O)2]
  • M r = 1061.51
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m510-efi1.jpg
  • a = 10.0084 (1) Å
  • b = 10.0781 (1) Å
  • c = 11.3941 (1) Å
  • α = 81.196 (1)°
  • β = 67.685 (1)°
  • γ = 69.472 (1)°
  • V = 995.43 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.33 mm−1
  • T = 296 K
  • 0.26 × 0.13 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.724, T max = 0.883
  • 10424 measured reflections
  • 3679 independent reflections
  • 3296 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.077
  • S = 1.03
  • 3679 reflections
  • 310 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, added_by_encifer. DOI: 10.1107/S1600536809012562/bt2923sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012562/bt2923Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently, we were interested in polymers formed by isophthalate ligands and the complexes the form with transition metals because of their diverse topologies and potential applications as functional materials (He et al., 2004, 2005, Zhang et al., 2006).

The structure features a centrosymmetric complex with three Co(II) centres, one of which is located on a centre of inversion. The Co centres are coordinated in a distorted octahedral geometry. The bipyridine ligands are bonded to just one Co centre in a chelating mode, whereas the 5-nitroisophthalate and acetate ions are bonded to two different Co atoms. The crystal structure is stabilized by O-H···O hydrogen bonds (Tab. 1).

Experimental

A mixture of Co(Ac)2.4H2O (0.1240g, 0.5 mmol), 2,2'-bipyridine (0.0790g, 0.5 mmol), 5-nitroisophthalic acid (0.1050g, 0.5mmol), 8 ml H2O and 8ml EtOH was heated at 413 K for three days in a 20 ml Teflon-lined stainless-steel autoclave. After cooling, a red plate shaped crystals of the title compound were obstained.

Refinement

The H atoms of aromatic and methyl group were positioned geometrically, and included in the refinement in the riding model approximation with C-H = 0.93 Å for aromatic H atoms and C-H = 0.96 Å for H atoms of methyl groups and Uiso=1.2Ueq(C). The H atoms of the water molecule were found in a difference Fourier map and refined isotropically with the O-H bonds restrained to 0.82 (1)Å and the H···H distance restrained to 1.4 (1)Å.

Figures

Fig. 1.
View of the title complex view. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity. Symmetry codes for generating equivalent atoms: (v) x-1, y, z. (vi) x, -y, 1-z. (vii) 1-x, 2-y, 1-z.

Crystal data

[Co3(C8H3NO6)2(C2H3O2)2(C10H8N2)2(H2O)2]Z = 1
Mr = 1061.51F(000) = 539
Triclinic, P1Dx = 1.771 Mg m3
a = 10.0084 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0781 (1) ÅCell parameters from 10424 reflections
c = 11.3941 (1) Åθ = 1.9–25.5°
α = 81.196 (1)°µ = 1.33 mm1
β = 67.685 (1)°T = 296 K
γ = 69.472 (1)°Plate, red
V = 995.43 (2) Å30.26 × 0.13 × 0.10 mm

Data collection

Bruker SMART 1K CCD diffractometer3679 independent reflections
Radiation source: fine-focus sealed tube3296 reflections with I > 2σ(I)
graphiteRint = 0.020
phi/ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −12→12
Tmin = 0.724, Tmax = 0.883k = −12→12
10424 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0358P)2 + 1.058P] where P = (Fo2 + 2Fc2)/3
3679 reflections(Δ/σ)max < 0.001
310 parametersΔρmax = 0.53 e Å3
3 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00001.00000.50000.02056 (11)
Co20.29863 (3)0.66172 (3)0.34001 (3)0.02348 (10)
N10.5014 (2)0.4947 (2)0.26205 (19)0.0264 (4)
N20.2395 (2)0.5533 (2)0.23098 (19)0.0271 (4)
C60.3533 (3)0.4463 (2)0.1610 (2)0.0259 (5)
O10.38924 (18)0.74188 (17)0.43457 (16)0.0283 (4)
O90.10814 (18)0.86327 (17)0.34394 (15)0.0263 (4)
C110.5544 (3)0.8074 (2)0.5603 (2)0.0218 (5)
H11A0.60880.73530.50170.026*
C170.3124 (3)0.8272 (2)0.5243 (2)0.0233 (5)
C160.3980 (3)0.8686 (2)0.5891 (2)0.0219 (5)
C190.8024 (3)0.7950 (3)0.5801 (2)0.0269 (5)
C120.6310 (3)0.8526 (2)0.6180 (2)0.0233 (5)
O30.8695 (2)0.67757 (19)0.5289 (2)0.0414 (5)
C50.5033 (3)0.4180 (2)0.1738 (2)0.0256 (5)
C40.6363 (3)0.3199 (3)0.1018 (2)0.0337 (6)
H4A0.63610.27030.03950.040*
C140.3935 (3)1.0141 (2)0.7364 (2)0.0273 (5)
C130.5491 (3)0.9578 (3)0.7079 (2)0.0272 (5)
H13A0.59770.98940.74780.033*
C150.3160 (3)0.9740 (2)0.6786 (2)0.0262 (5)
H15A0.21141.01630.69890.031*
C90.0689 (3)0.5133 (3)0.1519 (3)0.0382 (6)
H9A−0.02880.53890.14950.046*
C70.3293 (3)0.3687 (3)0.0849 (3)0.0352 (6)
H7A0.40920.29510.03690.042*
C100.1008 (3)0.5858 (3)0.2260 (3)0.0328 (6)
H10A0.02250.66010.27420.039*
C10.6309 (3)0.4698 (3)0.2832 (3)0.0327 (6)
H1A0.62950.52170.34470.039*
C80.1844 (3)0.4028 (3)0.0818 (3)0.0406 (7)
H8A0.16520.35120.03240.049*
C20.7661 (3)0.3707 (3)0.2180 (3)0.0379 (6)
H2A0.85330.35390.23690.046*
N30.3069 (3)1.1250 (3)0.8321 (2)0.0462 (6)
C30.7690 (3)0.2970 (3)0.1241 (3)0.0392 (6)
H3A0.85980.23230.07610.047*
O60.1710 (3)1.1769 (3)0.8577 (3)0.0776 (9)
O20.17072 (18)0.88101 (19)0.56665 (16)0.0318 (4)
O40.8652 (2)0.8704 (2)0.60355 (17)0.0369 (4)
O50.3732 (3)1.1514 (4)0.8890 (3)0.1161 (15)
O1W0.17349 (19)0.56964 (19)0.50084 (18)0.0318 (4)
H1WA0.0831 (15)0.620 (2)0.523 (3)0.048*
H1WB0.180 (3)0.4895 (15)0.486 (3)0.048*
O80.31763 (19)0.80788 (18)0.17845 (16)0.0334 (4)
C320.1871 (3)0.8911 (2)0.2305 (2)0.0263 (5)
C330.1213 (4)1.0190 (3)0.1602 (3)0.0468 (7)
H33A0.19491.02390.07720.070*
H33B0.09521.10250.20560.070*
H33C0.03141.01290.15240.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0155 (2)0.0220 (2)0.0263 (2)−0.00532 (16)−0.00810 (17)−0.00619 (17)
Co20.02330 (17)0.02240 (17)0.02775 (18)−0.00702 (13)−0.01024 (13)−0.00655 (13)
N10.0258 (10)0.0226 (10)0.0315 (11)−0.0068 (8)−0.0108 (8)−0.0030 (8)
N20.0270 (10)0.0274 (10)0.0295 (11)−0.0090 (8)−0.0106 (9)−0.0057 (8)
C60.0327 (13)0.0215 (11)0.0249 (12)−0.0087 (10)−0.0114 (10)−0.0010 (9)
O10.0230 (8)0.0311 (9)0.0350 (9)−0.0075 (7)−0.0115 (7)−0.0123 (7)
O90.0279 (9)0.0240 (8)0.0270 (9)−0.0078 (7)−0.0085 (7)−0.0052 (7)
C110.0251 (11)0.0195 (11)0.0236 (11)−0.0089 (9)−0.0092 (9)−0.0022 (9)
C170.0251 (12)0.0214 (11)0.0255 (12)−0.0074 (9)−0.0121 (9)0.0016 (9)
C160.0243 (11)0.0212 (11)0.0221 (11)−0.0085 (9)−0.0093 (9)−0.0001 (9)
C190.0258 (12)0.0310 (13)0.0279 (12)−0.0145 (10)−0.0099 (10)0.0027 (10)
C120.0256 (12)0.0219 (11)0.0256 (11)−0.0115 (9)−0.0099 (9)0.0020 (9)
O30.0261 (9)0.0334 (10)0.0636 (13)−0.0083 (8)−0.0114 (9)−0.0124 (9)
C50.0301 (12)0.0213 (11)0.0248 (12)−0.0083 (10)−0.0093 (10)0.0005 (9)
C40.0369 (14)0.0273 (13)0.0303 (13)−0.0046 (11)−0.0087 (11)−0.0040 (10)
C140.0327 (13)0.0255 (12)0.0241 (12)−0.0113 (10)−0.0063 (10)−0.0070 (10)
C130.0337 (13)0.0317 (13)0.0246 (12)−0.0182 (11)−0.0113 (10)−0.0029 (10)
C150.0239 (12)0.0250 (12)0.0274 (12)−0.0058 (9)−0.0073 (9)−0.0040 (10)
C90.0380 (15)0.0400 (15)0.0478 (16)−0.0155 (12)−0.0235 (13)−0.0031 (13)
C70.0434 (15)0.0287 (13)0.0365 (14)−0.0074 (11)−0.0180 (12)−0.0090 (11)
C100.0288 (13)0.0325 (13)0.0387 (14)−0.0082 (11)−0.0117 (11)−0.0098 (11)
C10.0318 (13)0.0284 (13)0.0433 (15)−0.0104 (11)−0.0180 (11)−0.0015 (11)
C80.0552 (18)0.0359 (15)0.0451 (16)−0.0165 (13)−0.0280 (14)−0.0090 (12)
C20.0274 (13)0.0329 (14)0.0530 (17)−0.0102 (11)−0.0160 (12)0.0063 (13)
N30.0444 (15)0.0481 (14)0.0441 (14)−0.0132 (12)−0.0057 (11)−0.0256 (12)
C30.0300 (14)0.0309 (14)0.0419 (15)−0.0007 (11)−0.0053 (12)−0.0006 (12)
O60.0595 (16)0.0778 (18)0.0809 (18)0.0265 (13)−0.0342 (14)−0.0527 (15)
O20.0200 (8)0.0421 (10)0.0341 (9)−0.0035 (7)−0.0137 (7)−0.0073 (8)
O40.0339 (10)0.0497 (11)0.0392 (10)−0.0286 (9)−0.0109 (8)−0.0037 (9)
O50.0539 (16)0.176 (3)0.130 (3)−0.0378 (19)0.0024 (16)−0.128 (3)
O1W0.0276 (9)0.0288 (9)0.0382 (10)−0.0091 (7)−0.0093 (8)−0.0044 (8)
O80.0297 (9)0.0333 (9)0.0322 (9)−0.0078 (8)−0.0055 (8)−0.0059 (8)
C320.0309 (13)0.0255 (12)0.0277 (12)−0.0107 (10)−0.0125 (10)−0.0058 (10)
C330.0542 (18)0.0416 (16)0.0379 (16)−0.0079 (14)−0.0182 (14)0.0054 (13)

Geometric parameters (Å, °)

Co1—O22.0503 (16)C5—C41.384 (3)
Co1—O2i2.0503 (16)C4—C31.381 (4)
Co1—O9i2.1153 (15)C4—H4A0.9300
Co1—O92.1153 (15)C14—C151.375 (3)
Co1—O4ii2.1154 (17)C14—C131.380 (4)
Co1—O4iii2.1154 (17)C14—N31.471 (3)
Co2—O12.0392 (15)C13—H13A0.9300
Co2—O1W2.0831 (18)C15—H15A0.9300
Co2—N12.1053 (19)C9—C81.372 (4)
Co2—N22.1249 (19)C9—C101.380 (4)
Co2—O82.1668 (18)C9—H9A0.9300
Co2—O92.2382 (16)C7—C81.382 (4)
N1—C11.338 (3)C7—H7A0.9300
N1—C51.350 (3)C10—H10A0.9300
N2—C101.331 (3)C1—C21.377 (4)
N2—C61.345 (3)C1—H1A0.9300
C6—C71.385 (3)C8—H8A0.9300
C6—C51.487 (3)C2—C31.380 (4)
O1—C171.259 (3)C2—H2A0.9300
O9—C321.281 (3)N3—O51.199 (3)
C11—C161.391 (3)N3—O61.206 (3)
C11—C121.395 (3)C3—H3A0.9300
C11—H11A0.9300O4—Co1iv2.1154 (17)
C17—O21.248 (3)O1W—H1WA0.826 (10)
C17—C161.508 (3)O1W—H1WB0.824 (10)
C16—C151.388 (3)O8—C321.248 (3)
C19—O31.244 (3)C32—C331.493 (4)
C19—O41.252 (3)C33—H33A0.9600
C19—C121.510 (3)C33—H33B0.9600
C12—C131.390 (3)C33—H33C0.9600
O2—Co1—O2i180.0C13—C12—C19119.0 (2)
O2—Co1—O9i92.58 (6)C11—C12—C19121.4 (2)
O2i—Co1—O9i87.42 (6)N1—C5—C4121.7 (2)
O2—Co1—O987.42 (6)N1—C5—C6115.1 (2)
O2i—Co1—O992.58 (6)C4—C5—C6123.2 (2)
O9i—Co1—O9180.000 (1)C3—C4—C5119.0 (2)
O2—Co1—O4ii90.67 (7)C3—C4—H4A120.5
O2i—Co1—O4ii89.33 (7)C5—C4—H4A120.5
O9i—Co1—O4ii88.72 (7)C15—C14—C13123.5 (2)
O9—Co1—O4ii91.28 (7)C15—C14—N3118.4 (2)
O2—Co1—O4iii89.33 (7)C13—C14—N3118.1 (2)
O2i—Co1—O4iii90.67 (7)C14—C13—C12118.1 (2)
O9i—Co1—O4iii91.28 (7)C14—C13—H13A120.9
O9—Co1—O4iii88.72 (7)C12—C13—H13A120.9
O4ii—Co1—O4iii180.0C14—C15—C16118.3 (2)
O1—Co2—O1W94.98 (7)C14—C15—H15A120.9
O1—Co2—N194.01 (7)C16—C15—H15A120.9
O1W—Co2—N1103.72 (7)C8—C9—C10118.6 (2)
O1—Co2—N2170.78 (7)C8—C9—H9A120.7
O1W—Co2—N287.41 (7)C10—C9—H9A120.7
N1—Co2—N276.77 (7)C8—C7—C6118.7 (2)
O1—Co2—O898.32 (7)C8—C7—H7A120.7
O1W—Co2—O8152.53 (7)C6—C7—H7A120.7
N1—Co2—O899.22 (7)N2—C10—C9122.5 (2)
N2—Co2—O883.29 (7)N2—C10—H10A118.8
O1—Co2—O994.50 (6)C9—C10—H10A118.8
O1W—Co2—O995.80 (7)N1—C1—C2123.0 (2)
N1—Co2—O9157.91 (7)N1—C1—H1A118.5
N2—Co2—O994.12 (7)C2—C1—H1A118.5
O8—Co2—O959.37 (6)C9—C8—C7119.6 (2)
C1—N1—C5118.4 (2)C9—C8—H8A120.2
C1—N1—Co2124.99 (16)C7—C8—H8A120.2
C5—N1—Co2116.21 (15)C1—C2—C3118.4 (2)
C10—N2—C6119.0 (2)C1—C2—H2A120.8
C10—N2—Co2124.78 (16)C3—C2—H2A120.8
C6—N2—Co2116.22 (15)O5—N3—O6122.5 (3)
N2—C6—C7121.6 (2)O5—N3—C14117.9 (3)
N2—C6—C5114.8 (2)O6—N3—C14119.3 (2)
C7—C6—C5123.6 (2)C2—C3—C4119.5 (2)
C17—O1—Co2124.66 (14)C2—C3—H3A120.3
C32—O9—Co1126.76 (14)C4—C3—H3A120.3
C32—O9—Co288.61 (13)C17—O2—Co1138.15 (16)
Co1—O9—Co2121.97 (8)C19—O4—Co1iv137.23 (17)
C16—C11—C12121.0 (2)Co2—O1W—H1WA109 (2)
C16—C11—H11A119.5Co2—O1W—H1WB111 (2)
C12—C11—H11A119.5H1WA—O1W—H1WB109 (2)
O2—C17—O1126.4 (2)C32—O8—Co292.74 (15)
O2—C17—C16116.0 (2)O8—C32—O9119.2 (2)
O1—C17—C16117.6 (2)O8—C32—C33120.5 (2)
C15—C16—C11119.6 (2)O9—C32—C33120.2 (2)
C15—C16—C17117.9 (2)C32—C33—H33A109.5
C11—C16—C17122.5 (2)C32—C33—H33B109.5
O3—C19—O4125.4 (2)H33A—C33—H33B109.5
O3—C19—C12118.0 (2)C32—C33—H33C109.5
O4—C19—C12116.6 (2)H33A—C33—H33C109.5
C13—C12—C11119.5 (2)H33B—C33—H33C109.5

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+2, −z+1; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3ii0.83 (2)1.99 (2)2.755 (3)154 (2)
O1W—H1WB···O3v0.83 (2)1.96 (2)2.762 (3)163 (3)

Symmetry codes: (ii) x−1, y, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2923).

References

  • Bruker (2002). SADABS, SAINT and SMART Bruker AXS Inc., Madison, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • He, H.-Y., Zhou, Y.-L. & Zhu, L.-G. (2004). Acta Cryst. C60, m569–m571. [PubMed]
  • He, H.-Y., Zhu, L.-G. & Ng, S. W. (2005). Acta Cryst. E61, m601–m602.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhang, Z., Zhou, Y.-L. & He, H.-Y. (2006). Acta Cryst. E62, m2591–m2593.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography