PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m498–m499.
Published online 2009 April 8. doi:  10.1107/S1600536809012641
PMCID: PMC2977562

{6,6′-Diethoxy-2,2′-[4,5-dimethyl-o-phenylenebis(nitrilomethylidyne)]di­phenolato}nickel(II) dihydrate

Abstract

In the title complex, [Ni(C26H26N2O4)]·2H2O, the NiII ion, lying on a twofold crystallographic rotation axis, has a square-planar geometry, being coordinated by the N2O2 unit of the tetra­dentate Schiff base ligand. The asymmetric unit of the title compound comprises one-half of the complex mol­ecule and one of the water mol­ecules of crystallization. The water H atoms form bifurcated O—H(...)(O,O) hydrogen bonds with the O atoms of the phenolato and eth­oxy groups with R 1 2(5) and R 1 2(6) ring motifs. The dihedral angle between the central benzene ring and the two outer benzene rings are 4.07 (11) and 3.99 (12)°. The dihedral angle between the two O–Ni–N coordination planes is only 0.77 (11)°. In the crystal structure, the mol­ecules are linked together into extended chains along the c axis by inter­molecular O—H(...)O and C—H(...)O inter­actions. An inter­esting feature of the crystal structure is a short inter­molecular C (...) C [3.355 (3) Å] contact, which is shorter than the sum of the van der Waals radii. The crystal structure may be further stabilized by inter­molecular π–π inter­actions [centroid–centroid distances in the range 3.5758 (13)–3.6337 (13) Å].

Related literature

For bond-length data, see Allen et al. (1987 [triangle]). For related structures see, for example: Clark et al. (1968 [triangle], 1969 [triangle], 1970 [triangle]). For the applications and bioactivity of Schiff base complexes see, for example: Elmali et al. (2000 [triangle]); Blower (1998 [triangle]); Granovski et al. (1993 [triangle]); Li & Chang, (1991 [triangle]); Shahrokhian et al. (2000 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m498-scheme1.jpg

Experimental

Crystal data

  • [Ni(C26H26N2O4)]·2H2O
  • M r = 525.23
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m498-efi2.jpg
  • a = 12.8706 (4) Å
  • b = 16.1130 (4) Å
  • c = 11.8546 (3) Å
  • V = 2458.45 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.83 mm−1
  • T = 294 K
  • 0.30 × 0.16 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.790, T max = 0.935
  • 16330 measured reflections
  • 3517 independent reflections
  • 2007 reflections with I > 2σI)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.122
  • S = 1.01
  • 3517 reflections
  • 161 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012641/cs2114sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012641/cs2114Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK and AJ thank PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of Schiff bases have been studied extensively, and copper(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1998; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

The NiII ion of the title compound (Fig. 1), shows a square planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand and lies across a crystallographic twofold rotation axis. The bond lengths (Allen et al.,, 1987) and angles are within normal ranges and are comparable with the related structures (Clark et al., 1968, 1969, 1970). The water H atoms form bifurcated O—H(O,O) intermolecular hydrogen bonds with the oxygen atoms of the phenolato- and ethoxy groups with R21(5) and R21(6) ring motifs (Bernstein et al., 1995), which may, in part, influence the molecular configuration (Fig. 1). The dihedral angle between the central benzene ring and the two outer benzene rings are 4.07 (11) and 3.99 (12)°. The dihedral angle between the two coordination planes O1—Ni1—N1 and O1A—Ni1—N1A is 0.77 (11)°. In the crystal structure the complex and two water molecules, association of which form the title compound, are linked together into 1-D extended chains by intermolecular O—H···O and C—H···O interactions along the c axis (Fig. 2). The interesting feature of the crystal structure is a short intermolecular C1···C7iii [3.355 (3) Å; (iii) 1 - x, -y, 1 - z ] contact, shorter than the sum of the van der Waals radius of carbon atoms. The crystal structure is further stabilized by intermolecular π-π [Cg1···Cg3iii = 3.5758 (13) Å; Cg2···Cg2iii = 3.6085 (11) Å; Cg2···Cg3iii = 3.6337 (13) Å, Cg1, Cg2 and Cg3 are the centroid of the Ni1/N1/C8/C8A/N1A, C1–C6, and Ni1/O1/C1/C6/C7/N1 rings, respectively].

Experimental

A chloroform solution (40 ml) of [N,N'-Bis(3-ethoxy-salicylidene)- 4,5-dimethyl-phenylenediamine (1 mmol) was added to a ethanol solution (20 mL) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air, deep-red block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement

The water H-atoms were located from the difference Fourier map and constrained to refine with the carrier atom after O—H distance restraint of 0.82 (1) Å. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.95–97 Å] and refined using a riding approximation model. A rotating-group model was used for the methyl groups.

Figures

Fig. 1.
The title molecular compound, showing 50° probability displacement ellipsoids and the atomic numbering, hydrogen bonds are shown as dashed lines. Symmetry code for suffix A: -x + 1, y, -z + 1/2.
Fig. 2.
A crystal packing excerpt of the title compound viewed down the b-axis, showing 1-D extended chains along the c-axis. Intermolecular interactions are drawn as dashed lines.

Crystal data

[Ni(C26H26N2O4)]·2H2OF(000) = 1104
Mr = 525.23Dx = 1.419 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2497 reflections
a = 12.8706 (4) Åθ = 2.7–22.3°
b = 16.1130 (4) ŵ = 0.83 mm1
c = 11.8546 (3) ÅT = 294 K
V = 2458.45 (12) Å3Block, red
Z = 40.30 × 0.16 × 0.08 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3517 independent reflections
Radiation source: fine-focus sealed tube2007 reflections with I > 2σ(I)
graphiteRint = 0.065
[var phi] and ω scansθmax = 29.8°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −17→17
Tmin = 0.790, Tmax = 0.935k = −22→22
16330 measured reflectionsl = −16→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1108P] where P = (Fo2 + 2Fc2)/3
3517 reflections(Δ/σ)max < 0.001
161 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.51 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.5000−0.00935 (2)0.25000.04044 (15)
O10.44372 (13)0.07589 (9)0.33400 (13)0.0501 (4)
O20.38481 (16)0.21443 (10)0.42373 (15)0.0716 (6)
N10.44336 (14)−0.09376 (10)0.33719 (15)0.0398 (4)
C10.38667 (17)0.06930 (14)0.4246 (2)0.0441 (5)
C20.3505 (2)0.14350 (15)0.4772 (2)0.0524 (6)
C30.2894 (2)0.14174 (16)0.5706 (2)0.0605 (7)
H3A0.26590.19120.60200.073*
C40.2614 (2)0.06548 (19)0.6203 (2)0.0660 (8)
H4A0.21930.06460.68410.079*
C50.2961 (2)−0.00668 (16)0.5746 (2)0.0566 (7)
H5A0.2790−0.05680.60880.068*
C60.35820 (19)−0.00679 (13)0.4755 (2)0.0451 (6)
C70.39054 (17)−0.08387 (14)0.42982 (19)0.0441 (5)
H7A0.3725−0.13150.46950.053*
C80.46786 (17)−0.17483 (13)0.29740 (18)0.0412 (5)
C90.43332 (19)−0.24982 (14)0.3410 (2)0.0498 (6)
H9A0.3879−0.24970.40200.060*
C100.4649 (2)−0.32468 (14)0.2957 (2)0.0519 (6)
C110.3545 (2)0.29234 (15)0.4698 (3)0.0759 (9)
H11A0.37830.29740.54710.091*
H11B0.27940.29790.46870.091*
C120.4041 (3)0.35795 (18)0.3968 (3)0.1078 (13)
H12A0.38240.41190.42190.162*
H12B0.38320.35000.31980.162*
H12C0.47830.35370.40220.162*
C130.4247 (3)−0.40558 (15)0.3438 (2)0.0791 (10)
H13A0.3822−0.39430.40860.119*
H13B0.4823−0.43990.36560.119*
H13C0.3841−0.43380.28770.119*
O1W0.38489 (17)0.20940 (12)0.15851 (16)0.0853 (6)
H1W10.37250.19550.22390.128*
H2W10.44750.20180.16480.128*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0477 (2)0.0286 (2)0.0450 (3)0.0000.00116 (19)0.000
O10.0667 (11)0.0307 (8)0.0530 (10)0.0029 (8)0.0057 (9)−0.0006 (7)
O20.1017 (15)0.0353 (9)0.0778 (13)0.0146 (9)0.0068 (11)−0.0068 (9)
N10.0447 (11)0.0313 (9)0.0434 (11)0.0007 (8)0.0005 (9)−0.0028 (8)
C10.0453 (13)0.0388 (12)0.0481 (14)0.0059 (10)−0.0064 (11)−0.0071 (11)
C20.0561 (15)0.0429 (14)0.0582 (16)0.0118 (12)−0.0078 (12)−0.0123 (12)
C30.0610 (17)0.0553 (16)0.0651 (18)0.0144 (13)−0.0023 (14)−0.0211 (14)
C40.0646 (17)0.0690 (19)0.0643 (18)0.0047 (14)0.0141 (14)−0.0177 (15)
C50.0582 (16)0.0584 (16)0.0533 (17)−0.0020 (12)0.0091 (13)−0.0069 (12)
C60.0447 (13)0.0418 (13)0.0487 (15)0.0012 (10)−0.0008 (10)−0.0074 (11)
C70.0470 (13)0.0392 (12)0.0461 (14)−0.0042 (10)0.0000 (11)−0.0020 (10)
C80.0496 (13)0.0312 (11)0.0429 (13)0.0000 (9)−0.0010 (10)−0.0010 (9)
C90.0603 (15)0.0384 (12)0.0507 (14)0.0005 (11)0.0115 (12)0.0003 (11)
C100.0660 (16)0.0321 (12)0.0576 (15)−0.0057 (10)0.0056 (12)0.0027 (10)
C110.079 (2)0.0387 (15)0.111 (2)0.0179 (14)−0.0129 (18)−0.0251 (16)
C120.161 (4)0.0409 (17)0.122 (3)0.016 (2)−0.011 (3)−0.0029 (18)
C130.111 (3)0.0372 (15)0.089 (2)−0.0093 (15)0.0313 (19)0.0036 (14)
O1W0.1029 (16)0.0723 (14)0.0809 (14)0.0234 (12)−0.0218 (12)0.0009 (11)

Geometric parameters (Å, °)

Ni1—O1i1.8447 (15)C7—H7A0.9300
Ni1—O11.8447 (15)C8—C91.387 (3)
Ni1—N11.8573 (17)C8—C8i1.396 (4)
Ni1—N1i1.8573 (17)C9—C101.381 (3)
O1—C11.306 (3)C9—H9A0.9300
O2—C21.380 (3)C10—C10i1.410 (5)
O2—C111.423 (3)C10—C131.514 (3)
N1—C71.301 (3)C11—C121.508 (4)
N1—C81.424 (2)C11—H11A0.9700
C1—C61.415 (3)C11—H11B0.9700
C1—C21.427 (3)C12—H12A0.9600
C2—C31.358 (3)C12—H12B0.9600
C3—C41.410 (4)C12—H12C0.9600
C3—H3A0.9300C13—H13A0.9600
C4—C51.358 (3)C13—H13B0.9600
C4—H4A0.9300C13—H13C0.9600
C5—C61.421 (3)O1W—H1W10.8226
C5—H5A0.9300O1W—H2W10.8179
C6—C71.417 (3)
O1i—Ni1—O183.75 (10)N1—C7—H7A117.2
O1i—Ni1—N1178.81 (7)C6—C7—H7A117.2
O1—Ni1—N195.21 (7)C9—C8—C8i119.32 (13)
O1i—Ni1—N1i95.21 (7)C9—C8—N1127.2 (2)
O1—Ni1—N1i178.81 (7)C8i—C8—N1113.45 (11)
N1—Ni1—N1i85.84 (11)C10—C9—C8121.4 (2)
C1—O1—Ni1127.19 (14)C10—C9—H9A119.3
C2—O2—C11117.8 (2)C8—C9—H9A119.3
C7—N1—C8120.49 (18)C9—C10—C10i119.14 (14)
C7—N1—Ni1125.80 (15)C9—C10—C13120.3 (2)
C8—N1—Ni1113.61 (14)C10i—C10—C13120.54 (14)
O1—C1—C6124.54 (19)O2—C11—C12106.4 (2)
O1—C1—C2118.4 (2)O2—C11—H11A110.5
C6—C1—C2117.1 (2)C12—C11—H11A110.5
C3—C2—O2125.3 (2)O2—C11—H11B110.5
C3—C2—C1121.8 (2)C12—C11—H11B110.5
O2—C2—C1112.9 (2)H11A—C11—H11B108.6
C2—C3—C4120.5 (2)C11—C12—H12A109.5
C2—C3—H3A119.8C11—C12—H12B109.5
C4—C3—H3A119.8H12A—C12—H12B109.5
C5—C4—C3119.7 (3)C11—C12—H12C109.5
C5—C4—H4A120.2H12A—C12—H12C109.5
C3—C4—H4A120.2H12B—C12—H12C109.5
C4—C5—C6121.1 (2)C10—C13—H13A109.5
C4—C5—H5A119.5C10—C13—H13B109.5
C6—C5—H5A119.5H13A—C13—H13B109.5
C1—C6—C7121.4 (2)C10—C13—H13C109.5
C1—C6—C5119.8 (2)H13A—C13—H13C109.5
C7—C6—C5118.8 (2)H13B—C13—H13C109.5
N1—C7—C6125.7 (2)H1W1—O1W—H2W193.7
O1i—Ni1—O1—C1−177.9 (2)C2—C1—C6—C7−179.8 (2)
O1—Ni1—N1—C7−4.77 (19)O1—C1—C6—C5179.7 (2)
N1i—Ni1—N1—C7175.8 (2)C2—C1—C6—C50.0 (3)
O1—Ni1—N1—C8178.82 (14)C4—C5—C6—C11.5 (4)
N1i—Ni1—N1—C8−0.62 (11)C4—C5—C6—C7−178.6 (2)
Ni1—O1—C1—C60.5 (3)C8—N1—C7—C6−177.5 (2)
Ni1—O1—C1—C2−179.89 (15)Ni1—N1—C7—C66.3 (3)
C11—O2—C2—C30.2 (4)C1—C6—C7—N1−3.4 (4)
C11—O2—C2—C1−179.2 (2)C5—C6—C7—N1176.7 (2)
O1—C1—C2—C3178.9 (2)C7—N1—C8—C96.6 (4)
C6—C1—C2—C3−1.4 (3)Ni1—N1—C8—C9−176.77 (19)
O1—C1—C2—O2−1.6 (3)C7—N1—C8—C8i−174.9 (2)
C6—C1—C2—O2178.1 (2)Ni1—N1—C8—C8i1.8 (3)
O2—C2—C3—C4−178.1 (2)C8i—C8—C9—C103.0 (4)
C1—C2—C3—C41.3 (4)N1—C8—C9—C10−178.6 (2)
C2—C3—C4—C50.3 (4)C8—C9—C10—C10i1.0 (5)
C3—C4—C5—C6−1.7 (4)C8—C9—C10—C13−179.1 (2)
O1—C1—C6—C7−0.2 (4)C2—O2—C11—C12178.9 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.822.503.087 (2)129
O1W—H1W1···O20.822.393.145 (3)152
O1W—H2W1···O1i0.822.473.083 (3)133
O1W—H2W1···O2i0.822.413.121 (3)146
C7—H7A···O1Wii0.932.573.383 (3)146

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2114).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Blower, P. J. (1998). Transition Met. Chem.23, 109–112.
  • Bruker (2005). APEX2 , SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.
  • Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.
  • Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.
  • Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. [PubMed]
  • Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Li, C. H. & Chang, T. C. (1991). Eur. Polym. J.27, 35–39.
  • Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem.72, 956–962. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography