PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m495.
Published online 2009 April 8. doi:  10.1107/S1600536809012367
PMCID: PMC2977559

(2,6-Difluoro­benzophenone)tris­(trimethyl­phosphine)cobalt(0)

Abstract

In the title compound, [Co(C13H8F2O)(C3H9P)3], the cobalt(0) atom is coordinated by three trimethyl­phosphine ligands and a π-coordinated carbonyl group of the 2,6-difluoro­benzo­phenone ligand in a distorted tetra­hedral geometry. The Co—O and Co—C distances are 1.896 (2) and 2.049 (4) Å, respectively.

Related literature

For general background to the activation of C—F bonds in organometallic chemistry and catalyst development, see: Kiplinger et al. (1994 [triangle]); Saunders (1996 [triangle]); Li et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m495-scheme1.jpg

Experimental

Crystal data

  • [Co(C13H8F2O)(C3H9P)3]
  • M r = 505.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m495-efi1.jpg
  • a = 14.214 (5) Å
  • b = 9.820 (4) Å
  • c = 19.241 (7) Å
  • β = 101.773 (6)°
  • V = 2629.3 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.86 mm−1
  • T = 273 K
  • 0.32 × 0.27 × 0.26 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.759, T max = 0.800
  • 13574 measured reflections
  • 5065 independent reflections
  • 3278 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.128
  • S = 0.99
  • 5065 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809012367/xu2497sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012367/xu2497Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support by the NSF China (No. 20872080/20772072) and the Science Foundation of Shandong Province, China (No. Y2007B06/Y2006B18).

supplementary crystallographic information

Comment

The activation of carbon-fluorine bonds is of great importance in organometallic chemistry and catalyst development because this type of reaction contributes tothe fundamental understanding of reactivity of stable bonds and selective replacement of F atoms (Kiplinger et al., 1994; Saunders, 1996). Recently we have reported cyclometalation reactions involving C—F bond activation at a cobalt(I) center with azine as an anchoring group, which afforded the first complex containing a C—Co—F fragment (Li et al., 2006).

We tried to synthesis compound I (Scheme 2) according to the route a in Fig. 2 throught the reaction of 2,6-difluorobenzophenone with tetra(trimethylphosphine)cobalt(0), but the reaction was actually occurred by route b (Scheme 2). Compound II was isolated as red crystals and its molecular structure is shown in Fig. 1. The cobalt atom is π-coordinated with carbonyl group. The Co—O and Co—C bond lengths are 1.896 (2) Å and 2.049 (4) Å (Table 1).

Experimental

The title compound was synthesized from the reaction of tetra(trimethyl phosphine)cobalt (1.2 g, 3.3 mmol) and 2,6-difluorobenzophenone (0.72 g, 3.3 mmol) in pentane (40 ml) for 24 h at 298 K. After filtration, the title complex was obtained from filtrate as red crystals at 246 K.

Refinement

The H atoms were geometrically placed and treated as riding atoms with C—H = 0.96 Å and Uiso(H)=1.5Ueq(C) for methyl H atoms, C—H = 0.93 Å and Uiso(H)=1.2Ueq(C) for arometic H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, displacement ellipsoids are drawn at the 25% probability level.
Fig. 2.
The formation of the title compound.

Crystal data

[Co(C13H8F2O)(C3H9P)3]F(000) = 1060
Mr = 505.34Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2218 reflections
a = 14.214 (5) Åθ = 2.3–22.0°
b = 9.820 (4) ŵ = 0.86 mm1
c = 19.241 (7) ÅT = 273 K
β = 101.773 (6)°Prism, red
V = 2629.3 (16) Å30.32 × 0.27 × 0.26 mm
Z = 4

Data collection

Bruker APEX2 CCD diffractometer5065 independent reflections
Radiation source: fine-focus sealed tube3278 reflections with I > 2σ(I)
graphiteRint = 0.047
[var phi] and ω scansθmax = 25.9°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→13
Tmin = 0.759, Tmax = 0.800k = −12→10
13574 measured reflectionsl = −21→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128w = 1/[σ2(Fo2) + (0.0646P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
5065 reflectionsΔρmax = 0.38 e Å3
262 parametersΔρmin = −0.31 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C220.0242 (3)0.2517 (5)0.0761 (3)0.0976 (17)
H22A0.03100.34850.07230.146*
H22B−0.02800.23210.09930.146*
H22C0.01120.21200.02950.146*
C210.1219 (4)0.2248 (7)0.2183 (3)0.146 (3)
H21A0.13840.31880.22750.219*
H21B0.16360.16860.25210.219*
H21C0.05650.21020.22250.219*
C200.1004 (3)0.0027 (5)0.1249 (4)0.156 (3)
H20A0.1527−0.05100.15030.234*
H20B0.0843−0.02700.07640.234*
H20C0.0456−0.00790.14640.234*
Co10.27686 (3)0.23243 (4)0.10451 (2)0.04168 (16)
P20.37675 (7)0.09320 (11)0.17586 (5)0.0577 (3)
P30.13547 (7)0.18019 (11)0.12795 (6)0.0611 (3)
P40.27110 (8)0.12824 (11)−0.00119 (5)0.0638 (3)
C20.2322 (2)0.5172 (3)0.14070 (17)0.0433 (8)
C10.2824 (2)0.4393 (3)0.09203 (17)0.0451 (8)
C80.2790 (3)0.4990 (4)0.01902 (19)0.0540 (9)
C30.1474 (3)0.5910 (4)0.1188 (2)0.0617 (10)
H30.11960.59680.07080.074*
C70.2722 (3)0.5159 (4)0.21376 (19)0.0603 (10)
H70.32860.46760.23020.072*
C170.4027 (3)0.1515 (5)0.2682 (2)0.0974 (16)
H17A0.34430.15290.28600.146*
H17B0.42950.24150.27050.146*
H17C0.44780.09060.29640.146*
C60.2294 (3)0.5848 (5)0.2616 (2)0.0764 (12)
H60.25880.58490.30940.092*
C130.1996 (4)0.4964 (4)−0.0364 (2)0.0715 (12)
C40.1040 (3)0.6561 (4)0.1688 (2)0.0706 (12)
H40.04650.70260.15340.085*
C120.2003 (5)0.5465 (5)−0.1037 (2)0.0985 (18)
H120.14520.5432−0.13930.118*
C50.1444 (3)0.6530 (5)0.2400 (2)0.0744 (12)
H50.11470.69620.27280.089*
C140.1648 (4)0.1393 (6)−0.0739 (2)0.1102 (19)
H14A0.14360.2322−0.07980.165*
H14B0.11410.0840−0.06280.165*
H14C0.18110.1075−0.11720.165*
C190.4970 (3)0.1005 (6)0.1562 (3)0.115 (2)
H19A0.49430.07200.10810.172*
H19B0.53920.04120.18790.172*
H19C0.52080.19220.16220.172*
C90.3600 (4)0.5615 (4)0.0023 (2)0.0722 (12)
C150.3646 (4)0.1877 (6)−0.0472 (3)0.1090 (18)
H15A0.36190.2852−0.05110.163*
H15B0.35420.1483−0.09380.163*
H15C0.42650.1608−0.02080.163*
C180.3626 (4)−0.0900 (5)0.1899 (3)0.0966 (16)
H18A0.3488−0.13560.14480.145*
H18B0.3106−0.10440.21400.145*
H18C0.4209−0.12570.21810.145*
C160.2929 (5)−0.0555 (5)−0.0030 (3)0.122 (2)
H16A0.3485−0.07830.03260.184*
H16B0.3037−0.0810−0.04890.184*
H16C0.2380−0.10360.00630.184*
C100.3645 (5)0.6093 (5)−0.0633 (3)0.1023 (19)
H100.42120.6469−0.07180.123*
C110.2840 (6)0.6012 (6)−0.1169 (3)0.115 (3)
H110.28620.6329−0.16210.139*
F20.11615 (18)0.4390 (3)−0.02486 (12)0.0844 (7)
F10.4389 (2)0.5788 (3)0.05420 (16)0.0992 (9)
O0.36561 (15)0.3788 (2)0.12166 (12)0.0507 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C220.049 (3)0.106 (4)0.136 (4)0.015 (2)0.015 (3)0.016 (3)
C210.092 (4)0.265 (9)0.095 (4)−0.069 (5)0.055 (3)−0.020 (4)
C200.066 (3)0.063 (4)0.336 (9)−0.020 (3)0.033 (4)0.019 (5)
Co10.0387 (3)0.0395 (3)0.0451 (3)0.00219 (19)0.00419 (19)0.0017 (2)
P20.0495 (6)0.0589 (7)0.0628 (6)0.0071 (5)0.0071 (5)0.0193 (5)
P30.0434 (5)0.0559 (7)0.0824 (7)−0.0070 (4)0.0089 (5)0.0030 (5)
P40.0753 (7)0.0568 (7)0.0559 (6)0.0111 (5)0.0058 (5)−0.0120 (5)
C20.0445 (19)0.039 (2)0.0469 (19)−0.0049 (15)0.0095 (16)−0.0005 (15)
C10.0457 (19)0.043 (2)0.0458 (19)0.0017 (15)0.0072 (16)0.0023 (16)
C80.074 (3)0.041 (2)0.051 (2)0.0144 (18)0.024 (2)0.0037 (17)
C30.072 (3)0.054 (3)0.057 (2)0.010 (2)0.010 (2)−0.0017 (19)
C70.060 (2)0.066 (3)0.051 (2)−0.0006 (19)0.0030 (19)−0.0088 (19)
C170.106 (4)0.106 (4)0.066 (3)−0.004 (3)−0.015 (3)0.022 (3)
C60.094 (3)0.082 (3)0.053 (2)−0.008 (3)0.014 (2)−0.017 (2)
C130.101 (3)0.064 (3)0.051 (3)0.037 (3)0.019 (3)0.009 (2)
C40.064 (3)0.058 (3)0.093 (3)0.009 (2)0.021 (2)−0.010 (2)
C120.157 (5)0.085 (4)0.051 (3)0.058 (4)0.016 (3)0.014 (3)
C50.083 (3)0.077 (3)0.074 (3)−0.008 (3)0.039 (3)−0.022 (2)
C140.109 (4)0.129 (5)0.074 (3)0.024 (3)−0.025 (3)−0.042 (3)
C190.050 (3)0.169 (6)0.127 (4)0.028 (3)0.020 (3)0.073 (4)
C90.105 (4)0.051 (3)0.072 (3)0.006 (2)0.046 (3)0.007 (2)
C150.140 (5)0.108 (5)0.093 (4)0.018 (4)0.059 (4)−0.012 (3)
C180.116 (4)0.065 (3)0.106 (4)0.022 (3)0.017 (3)0.032 (3)
C160.201 (6)0.060 (4)0.101 (4)0.021 (4)0.017 (4)−0.020 (3)
C100.167 (6)0.066 (3)0.097 (4)0.006 (3)0.081 (4)0.012 (3)
C110.222 (8)0.072 (4)0.077 (4)0.053 (4)0.088 (5)0.025 (3)
F20.0767 (16)0.101 (2)0.0655 (15)0.0232 (15)−0.0084 (13)0.0003 (13)
F10.099 (2)0.092 (2)0.116 (2)−0.0297 (16)0.0463 (19)0.0059 (17)
O0.0400 (13)0.0444 (14)0.0660 (15)−0.0008 (10)0.0070 (11)0.0052 (11)

Geometric parameters (Å, °)

C22—P31.829 (4)C7—H70.9300
C22—H22A0.9600C17—H17A0.9600
C22—H22B0.9600C17—H17B0.9600
C22—H22C0.9600C17—H17C0.9600
C21—P31.841 (5)C6—C51.370 (6)
C21—H21A0.9600C6—H60.9300
C21—H21B0.9600C13—F21.372 (5)
C21—H21C0.9600C13—C121.386 (6)
C20—P31.810 (5)C4—C51.374 (6)
C20—H20A0.9600C4—H40.9300
C20—H20B0.9600C12—C111.376 (7)
C20—H20C0.9600C12—H120.9300
Co1—O1.896 (2)C5—H50.9300
Co1—C12.049 (4)C14—H14A0.9600
Co1—P22.2304 (11)C14—H14B0.9600
Co1—P32.2081 (12)C14—H14C0.9600
Co1—P42.2632 (13)C19—H19A0.9600
P2—C191.826 (4)C19—H19B0.9600
P2—C171.830 (4)C19—H19C0.9600
P2—C181.836 (5)C9—F11.351 (5)
P4—C161.833 (5)C9—C101.361 (6)
P4—C151.835 (5)C15—H15A0.9600
P4—C141.842 (4)C15—H15B0.9600
C2—C31.395 (5)C15—H15C0.9600
C2—C71.405 (5)C18—H18A0.9600
C2—C11.498 (4)C18—H18B0.9600
C1—O1.343 (4)C18—H18C0.9600
C1—C81.514 (5)C16—H16A0.9600
C8—C131.386 (5)C16—H16B0.9600
C8—C91.399 (6)C16—H16C0.9600
C3—C41.398 (5)C10—C111.378 (8)
C3—H30.9300C10—H100.9300
C7—C61.379 (5)C11—H110.9300
P3—C22—H22A109.5C2—C7—H7119.3
P3—C22—H22B109.5P2—C17—H17A109.5
H22A—C22—H22B109.5P2—C17—H17B109.5
P3—C22—H22C109.5H17A—C17—H17B109.5
H22A—C22—H22C109.5P2—C17—H17C109.5
H22B—C22—H22C109.5H17A—C17—H17C109.5
P3—C21—H21A109.5H17B—C17—H17C109.5
P3—C21—H21B109.5C5—C6—C7121.3 (4)
H21A—C21—H21B109.5C5—C6—H6119.4
P3—C21—H21C109.5C7—C6—H6119.4
H21A—C21—H21C109.5F2—C13—C12117.9 (5)
H21B—C21—H21C109.5F2—C13—C8118.5 (3)
P3—C20—H20A109.5C12—C13—C8123.5 (5)
P3—C20—H20B109.5C5—C4—C3121.5 (4)
H20A—C20—H20B109.5C5—C4—H4119.3
P3—C20—H20C109.5C3—C4—H4119.3
H20A—C20—H20C109.5C11—C12—C13118.8 (5)
H20B—C20—H20C109.5C11—C12—H12120.6
O—Co1—C139.56 (11)C13—C12—H12120.6
O—Co1—P3137.86 (8)C6—C5—C4118.5 (4)
C1—Co1—P3108.22 (10)C6—C5—H5120.8
O—Co1—P292.30 (8)C4—C5—H5120.8
C1—Co1—P2130.17 (9)P4—C14—H14A109.5
P3—Co1—P2102.91 (5)P4—C14—H14B109.5
O—Co1—P4113.57 (8)H14A—C14—H14B109.5
C1—Co1—P4109.76 (10)P4—C14—H14C109.5
P3—Co1—P4102.18 (5)H14A—C14—H14C109.5
P2—Co1—P4100.24 (5)H14B—C14—H14C109.5
C19—P2—C17100.2 (2)P2—C19—H19A109.5
C19—P2—C18101.8 (2)P2—C19—H19B109.5
C17—P2—C1899.8 (2)H19A—C19—H19B109.5
C19—P2—Co1110.71 (15)P2—C19—H19C109.5
C17—P2—Co1112.49 (17)H19A—C19—H19C109.5
C18—P2—Co1128.02 (16)H19B—C19—H19C109.5
C20—P3—C2298.6 (3)F1—C9—C10116.9 (5)
C20—P3—C21100.3 (3)F1—C9—C8118.9 (4)
C22—P3—C21100.3 (3)C10—C9—C8124.2 (5)
C20—P3—Co1118.24 (19)P4—C15—H15A109.5
C22—P3—Co1121.41 (17)P4—C15—H15B109.5
C21—P3—Co1114.39 (17)H15A—C15—H15B109.5
C16—P4—C1599.3 (3)P4—C15—H15C109.5
C16—P4—C1499.2 (3)H15A—C15—H15C109.5
C15—P4—C14100.2 (3)H15B—C15—H15C109.5
C16—P4—Co1119.15 (17)P2—C18—H18A109.5
C15—P4—Co1113.11 (18)P2—C18—H18B109.5
C14—P4—Co1122.00 (16)H18A—C18—H18B109.5
C3—C2—C7117.0 (3)P2—C18—H18C109.5
C3—C2—C1124.7 (3)H18A—C18—H18C109.5
C7—C2—C1118.3 (3)H18B—C18—H18C109.5
O—C1—C2116.8 (3)P4—C16—H16A109.5
O—C1—C8115.1 (3)P4—C16—H16B109.5
C2—C1—C8116.9 (3)H16A—C16—H16B109.5
O—C1—Co164.08 (17)P4—C16—H16C109.5
C2—C1—Co1113.5 (2)H16A—C16—H16C109.5
C8—C1—Co1119.9 (2)H16B—C16—H16C109.5
C13—C8—C9114.2 (4)C9—C10—C11119.0 (6)
C13—C8—C1125.0 (4)C9—C10—H10120.5
C9—C8—C1120.7 (4)C11—C10—H10120.5
C2—C3—C4120.3 (4)C12—C11—C10120.2 (5)
C2—C3—H3119.8C12—C11—H11119.9
C4—C3—H3119.8C10—C11—H11119.9
C6—C7—C2121.3 (4)C1—O—Co176.37 (18)
C6—C7—H7119.3

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2497).

References

  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kiplinger, J. L., Richmond, T. G. & Osterberg, C. E. (1994). Chem. Rev.94, 373-431.
  • Li, X., Sun, H., Yu, F., Flörke, U. & Klein, H. F. (2006). Organometallics, 25, 4695-4697.
  • Saunders, G. C. (1996). Angew. Chem. Int. Ed.35, 2615-2617.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography