PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m494.
Published online 2009 April 8. doi:  10.1107/S1600536809012422
PMCID: PMC2977558

Aqua­bis­(methacrylato-κO)bis(pyridine-κN)copper(II)

Abstract

In the crystal structure of the title complex, [Cu(C4H5O2)2(C5H5N)2(H2O)], the CuII cation is located on a twofold rotation axis and coordinated by two methyl­acrylate anions, two pyridine ligands and one water mol­ecule in a distorted square-pyramidal geometry. The coordinated water mol­ecule is also located on the twofold axis. In the crystal structure O—H(...)O hydrogen bonds link the mol­ecules, forming chains along the c axis.

Related literature

For general background to copper complexes, see: Du et al. (2004 [triangle]); Hu et al. (2004 [triangle]); Zhu et al. (2007 [triangle]). For a related structure, see: Wu & Wang (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m494-scheme1.jpg

Experimental

Crystal data

  • [Cu(C4H5O2)2(C5H5N)2(H2O)]
  • M r = 409.92
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m494-efi1.jpg
  • a = 15.619 (3) Å
  • b = 40.200 (8) Å
  • c = 6.0576 (12) Å
  • V = 3803.4 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.18 mm−1
  • T = 293 K
  • 0.50 × 0.36 × 0.08 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan ABSCOR (Higashi, 1995 [triangle]) T min = 0.612, T max = 0.913
  • 7925 measured reflections
  • 1808 independent reflections
  • 1740 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.055
  • S = 1.09
  • 1808 reflections
  • 124 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 797 Friedel pairs
  • Flack parameter: 0.006 (13)

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012422/xu2491sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012422/xu2491Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province, China (M203105).

supplementary crystallographic information

Comment

Copper complexes with organic acids and other donor ligands exist extensively in living things, playing an important role in a vast range of chemical and biochemical catalytic systems. A series of copper-carboxylate complexes has been reported (Du et al., 2004; Hu et al., 2004; Zhu et al., 2007).

The molecular structure is shown in Fig. 1. The Cu atom is located on a twofold axis and coordinated with two methylacrylate, two pyridine ligands and one coordinated water molecule in a distorted square-pyramidal geometry (Table 1).

The compound is an infinite one-dimensional network structure connected by hydrogen bonds. It forms hydrogen bonds between coordination waters and carboxy group (Table 2).

The corresponding complex with one pyridine ligand has binuclear cage structural unit, two Cu atoms are bridged by four µ2–O,O'α-methacrylate groups, forming a cage structure (Wu et al., 2004).

Experimental

HL, CH2C(CH3)COOH, (0.5 ml, 6.0 mmol) and Cu(NO3)2.3H2O (240 mg, 1.0 mmol) were dissolved in 60 ml H2O, and the pH adjusted to 4.0 using 0.5 M NaOH. Two mililiters of 1.0 M pyridine solution were added into the mixed solution with stirring. After filtration, the filtrate was allowed to stand at room temperature and single crystals were obtained after one week.

Refinement

Methyl H atoms were constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. The methylene H atoms and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level for non-H atoms.

Crystal data

[Cu(C4H5O2)2(C5H5N)2(H2O)]F(000) = 1704
Mr = 409.92Dx = 1.432 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71069 Å
Hall symbol: F 2 -2dCell parameters from 8692 reflections
a = 15.619 (3) Åθ = 3.0–27.5°
b = 40.200 (8) ŵ = 1.18 mm1
c = 6.0576 (12) ÅT = 293 K
V = 3803.4 (13) Å3Platelet, blue
Z = 80.50 × 0.36 × 0.08 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer1808 independent reflections
Radiation source: fine-focus sealed tube1740 reflections with I > 2σ(I)
graphiteRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 25.8°, θmin = 3.3°
ω scansh = −18→18
Absorption correction: multi-scan ABSCOR (Higashi, 1995)k = −48→48
Tmin = 0.612, Tmax = 0.913l = −7→7
7925 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055w = 1/[σ2(Fo2) + (0.0325P)2 + 0.6515P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1808 reflectionsΔρmax = 0.15 e Å3
124 parametersΔρmin = −0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 797 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.006 (13)

Special details

Experimental. Analysis: calculated C 52.74, H 5.41, N 6.83%; found C 52.61, H 5.22, N 6.69%. Spectroscopic analysis: IR (KBr, ν cm-1): 700, 832, 936, 1036, 1214, 1243, 1368, 1417, 1599, 1642.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu1.00000.00000.11357 (7)0.03375 (10)
O11.00000.00000.4901 (4)0.0450 (5)
O21.05574 (8)0.04310 (3)0.1163 (3)0.0442 (3)
O31.03022 (11)0.05452 (4)−0.2378 (3)0.0529 (4)
N10.88531 (9)0.02292 (3)0.0789 (3)0.0361 (3)
C11.05091 (11)0.06268 (5)−0.0494 (3)0.0371 (4)
C21.07255 (14)0.09857 (5)−0.0019 (4)0.0460 (5)
C31.0791 (3)0.10857 (7)0.2115 (5)0.0967 (13)
H3A1.09220.13060.24390.116*
H3B1.07050.09340.32520.116*
C41.0850 (2)0.12071 (5)−0.1829 (5)0.0694 (7)
H4A1.10000.1423−0.12810.104*
H4B1.03310.1222−0.26720.104*
H4C1.13020.1125−0.27520.104*
C50.83858 (12)0.01819 (5)−0.1017 (3)0.0431 (5)
H50.86070.0050−0.21430.052*
C60.75841 (12)0.03207 (5)−0.1284 (8)0.0485 (4)
H60.72750.0286−0.25760.058*
C70.72506 (13)0.05110 (5)0.0387 (4)0.0493 (5)
H70.67050.06020.02620.059*
C80.77349 (15)0.05649 (5)0.2250 (5)0.0523 (6)
H80.75250.06950.33970.063*
C90.85367 (14)0.04220 (4)0.2390 (4)0.0443 (4)
H90.88680.04610.36400.053*
H11.0098 (15)0.0163 (6)0.569 (6)0.052 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.02640 (14)0.04033 (15)0.03451 (15)0.00130 (13)0.0000.000
O10.0619 (14)0.0422 (12)0.0309 (11)−0.0041 (9)0.0000.000
O20.0355 (6)0.0454 (6)0.0516 (8)−0.0031 (5)−0.0055 (7)0.0079 (7)
O30.0684 (10)0.0493 (7)0.0410 (8)−0.0091 (7)0.0044 (8)−0.0081 (7)
N10.0290 (7)0.0405 (7)0.0389 (9)0.0003 (6)0.0015 (7)0.0002 (7)
C10.0287 (9)0.0394 (9)0.0432 (10)0.0040 (7)0.0049 (8)−0.0027 (8)
C20.0534 (12)0.0379 (9)0.0468 (11)0.0101 (8)−0.0090 (10)−0.0030 (9)
C30.185 (4)0.0516 (14)0.0534 (16)0.0172 (18)−0.027 (2)−0.0070 (12)
C40.109 (2)0.0436 (10)0.0552 (16)−0.0013 (12)−0.0059 (15)0.0058 (11)
C50.0357 (9)0.0541 (10)0.0394 (12)0.0002 (8)−0.0002 (8)−0.0046 (8)
C60.0362 (9)0.0556 (10)0.0538 (11)−0.0010 (8)−0.0128 (11)0.0031 (17)
C70.0319 (9)0.0450 (10)0.0711 (15)0.0064 (8)−0.0002 (10)0.0046 (10)
C80.0475 (12)0.0461 (11)0.0634 (14)0.0101 (9)0.0061 (11)−0.0088 (11)
C90.0419 (11)0.0457 (9)0.0453 (11)0.0022 (8)−0.0027 (9)−0.0038 (9)

Geometric parameters (Å, °)

Cu—O12.281 (2)C3—H3B0.9300
Cu—O21.9389 (12)C4—H4A0.9600
Cu—O2i1.9391 (12)C4—H4B0.9600
Cu—N12.0254 (14)C4—H4C0.9600
Cu—N1i2.0254 (14)C5—C61.380 (3)
O1—H10.82 (3)C5—H50.9300
O2—C11.278 (2)C6—C71.371 (5)
O3—C11.230 (3)C6—H60.9300
N1—C51.329 (3)C7—C81.376 (4)
N1—C91.336 (3)C7—H70.9300
C1—C21.510 (3)C8—C91.380 (3)
C2—C31.357 (4)C8—H80.9300
C2—C41.425 (3)C9—H90.9300
C3—H3A0.9300
O2—Cu—O2i179.03 (10)H3A—C3—H3B120.0
O2—Cu—N189.51 (5)C2—C4—H4A109.5
O2i—Cu—N190.59 (5)C2—C4—H4B109.5
O2—Cu—N1i90.59 (5)H4A—C4—H4B109.5
O2i—Cu—N1i89.51 (5)C2—C4—H4C109.5
N1—Cu—N1i168.08 (10)H4A—C4—H4C109.5
O2—Cu—O189.51 (5)H4B—C4—H4C109.5
O2i—Cu—O189.51 (5)N1—C5—C6122.5 (3)
N1—Cu—O195.96 (5)N1—C5—H5118.8
N1i—Cu—O195.96 (5)C6—C5—H5118.8
Cu—O1—H1126 (2)C7—C6—C5118.9 (3)
C1—O2—Cu121.15 (13)C7—C6—H6120.5
C5—N1—C9118.52 (16)C5—C6—H6120.5
C5—N1—Cu120.41 (13)C6—C7—C8119.0 (2)
C9—N1—Cu121.03 (14)C6—C7—H7120.5
O3—C1—O2125.43 (17)C8—C7—H7120.5
O3—C1—C2119.36 (18)C7—C8—C9118.9 (2)
O2—C1—C2115.21 (18)C7—C8—H8120.5
C3—C2—C4122.5 (2)C9—C8—H8120.5
C3—C2—C1118.8 (2)N1—C9—C8122.1 (2)
C4—C2—C1118.7 (2)N1—C9—H9118.9
C2—C3—H3A120.0C8—C9—H9118.9
C2—C3—H3B120.0

Symmetry codes: (i) −x+2, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O3ii0.83 (3)1.96 (3)2.783 (2)178 (2)

Symmetry codes: (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2491).

References

  • Du, M., Cai, H. & Zhao, X.-J. (2004). Acta Cryst. E60, m1139–m1141.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hu, R.-Z., Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m946–m947.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, B. & Wang, G. (2004). Acta Cryst. E60, m1764–m1765.
  • Zhu, X.-F., Zhao, L.-M., Hou, G.-F. & Gao, J.-S. (2007). Acta Cryst. E63, m1809.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography