PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m485.
Published online 2009 April 8. doi:  10.1107/S1600536809011659
PMCID: PMC2977551

Aqua­(3-formyl-2-oxidobenzoato-κ2 O 1,O 2)(1,10-phenanthroline-κ2 N,N′)copper(II) dimethyl­formamide solvate

Abstract

In the structure of the title complex, [Cu(C8H4O4)(C12H8N2)(H2O)]·C3H7NO, the CuII ion is penta­coordinated in a distorted square-pyramidal geometry by two O atoms of a 3-formyl-2-oxidobenzoate dianion and two N atoms of a 1,10-phenanthroline ligand occupying the basal plane and a water O atom located at the apical site. The structure displays O—H(...)O hydrogen bonding and inter­molecular π–π stacking inter­actions between 1,10-phenantroline ligands [inter­planar distance of 3.448 (5) Å].

Related literature

For the structure of the methanol solvate of aqua­(3-formyl-2-oxidobenzoato-κ2 O 1,O 2)(1,10-phenanthroline-κ2 N,N′)copper(II), see: Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m485-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H4O4)(C12H8N2)(H2O)]·C3H7NO
  • M r = 498.97
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m485-efi1.jpg
  • a = 9.6936 (6) Å
  • b = 10.9020 (12) Å
  • c = 11.2800 (7) Å
  • α = 103.834 (1)°
  • β = 109.764 (1)°
  • γ = 98.604 (1)°
  • V = 1054.09 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.08 mm−1
  • T = 296 K
  • 0.39 × 0.35 × 0.28 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.677, T max = 0.751
  • 5440 measured reflections
  • 3687 independent reflections
  • 3452 reflections with I > 2σ(I)
  • R int = 0.011

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.112
  • S = 1.08
  • 3687 reflections
  • 301 parameters
  • H-atom parameters constrained
  • Δρmax = 0.81 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011659/gk2199sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011659/gk2199Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

supplementary crystallographic information

Comment

Recently we have reported the crystal structure of the methanol solvate of the title coordination compound. Here we report the crystal structure of its dimethylformamide solvate.

In the complex, the Cu2+ ion is pentacoordinated, with two O atoms of 3-carboxylsalicylaldehyde anion and two N atoms from 1,10-phenanthroline ligand in the basal plane and the O atom of water molecule completing the square-pyramidal geometry from the apical site (Fig. 1). The atoms N1, N2, O3 and O2 are nearly coplanar, and the Cu atom is displaced by 0.137 Å from this plane towards the apical O atom, giving the N1–Cu1–O2 angle of 172.36 (8)° and N2–Cu1–O3 angle of 166.78 (9) °. The structure of the complex molecule is very similar to that observed in the methanol solvate (Zhang et al., 2008).

There are two kinds of intermolecular hydrogen bonds in the crystal. One is between the H1WA atom of the water molecule and the O5 atom of the DMF molecule and the other is between the H1WB atom of the water molecule and the uncoordinated O4 atom (O4i: (i) = -x + 1, -y, -z + 1) of the carboxylate group. Intermolecular hydrogen bonds and π–π stacking interactions phenanthroline ligands (the interplanar distance of 3.448 Å) generate one-dimensional structure shown in Fig. 2.

Experimental

3-Carboxylsalicylaldehyde (0.166 g, 1.0 mmol) was dissolved in 10 ml of aqueous solution containing 0.080 g (2.0 mmol) NaOH. To this solution, 15 ml of DMF solution containing 1,10-phenanthroline (0.1982 g, 1 mmol) and CuCl2.2H2O (0.1705 g, 1 mmol) was added. The mixture was stirred at room temperature for 2 h, then filtered to give a green solution. The filtrate was airproofed and kept at room temperature. Two weeks later, green block-shaped crystal of X-ray quality were obtained.

Refinement

The positions of the water H atoms obtained from a difference Fourier map were constraestained to ideal water geometry and fixed in the final stages of refinement (O-H 0.85 Å). All other H atoms were included in calculated positions, with C—H distances ranging from 0.93 to 0.96 Å. They were refined in the riding-model approximation, with Uiso(H) = 1.2 Ueq (C) or 1.5 Ueq(C, O).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoides are shown at the 25% probability level.
Fig. 2.
The molecular packing of the title compound. Hydrogen bonds are indicated by dashed lines.

Crystal data

[Cu(C8H4O4)(C12H8N2)(H2O)]·C3H7NOZ = 2
Mr = 498.97F(000) = 514
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6936 (6) ÅCell parameters from 4490 reflections
b = 10.9020 (12) Åθ = 2.3–28.3°
c = 11.2800 (7) ŵ = 1.08 mm1
α = 103.834 (1)°T = 296 K
β = 109.764 (1)°Block, green
γ = 98.604 (1)°0.39 × 0.35 × 0.28 mm
V = 1054.09 (15) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3687 independent reflections
Radiation source: fine-focus sealed tube3452 reflections with I > 2σ(I)
graphiteRint = 0.011
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→11
Tmin = 0.677, Tmax = 0.751k = −12→12
5440 measured reflectionsl = −13→5

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0719P)2 + 0.6371P] where P = (Fo2 + 2Fc2)/3
3687 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = −0.47 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.16328 (3)0.00556 (3)0.42283 (3)0.03264 (14)
O1W0.3462 (2)0.1436 (2)0.3911 (2)0.0530 (5)
H1WA0.39930.20980.45810.064*
H1WB0.40650.10740.36400.064*
N10.1623 (2)−0.1462 (2)0.2786 (2)0.0327 (4)
N2−0.0089 (2)0.0216 (2)0.2678 (2)0.0308 (4)
O10.0712 (3)0.4672 (2)0.7470 (2)0.0664 (7)
O20.1357 (2)0.13957 (18)0.54916 (17)0.0398 (4)
O30.3000 (2)−0.0508 (2)0.55253 (18)0.0448 (5)
O40.4950 (2)−0.0174 (2)0.73640 (19)0.0488 (5)
C10.2529 (3)−0.2267 (3)0.2873 (3)0.0398 (6)
H10.3279−0.21600.36930.048*
C20.2386 (4)−0.3274 (3)0.1765 (3)0.0464 (7)
H20.3035−0.38240.18590.056*
C30.1309 (3)−0.3448 (3)0.0559 (3)0.0443 (6)
H30.1210−0.4118−0.01760.053*
C40.0332 (3)−0.2596 (2)0.0429 (2)0.0359 (6)
C5−0.0824 (3)−0.2675 (3)−0.0794 (3)0.0459 (7)
H5−0.0983−0.3331−0.15610.055*
C6−0.1692 (3)−0.1811 (3)−0.0857 (3)0.0449 (7)
H6−0.2427−0.1875−0.16690.054*
C7−0.1500 (3)−0.0799 (3)0.0307 (2)0.0364 (6)
C8−0.2360 (3)0.0125 (3)0.0314 (3)0.0445 (6)
H8−0.31190.0107−0.04650.053*
C9−0.2064 (3)0.1058 (3)0.1490 (3)0.0460 (7)
H9−0.26260.16770.15100.055*
C10−0.0924 (3)0.1080 (3)0.2656 (3)0.0376 (6)
H10−0.07420.17190.34420.045*
C11−0.0379 (3)−0.0707 (2)0.1520 (2)0.0302 (5)
C120.0550 (3)−0.1618 (2)0.1578 (2)0.0307 (5)
C130.0912 (4)0.3653 (3)0.6920 (3)0.0460 (7)
H130.02300.32050.60560.055*
C140.2124 (3)0.3076 (2)0.7494 (3)0.0353 (6)
C150.3105 (3)0.3681 (3)0.8826 (3)0.0432 (6)
H150.29610.44330.93140.052*
C160.4270 (4)0.3178 (3)0.9413 (3)0.0503 (7)
H160.49250.35911.02920.060*
C170.4463 (3)0.2053 (3)0.8687 (3)0.0413 (6)
H170.52520.17130.91000.050*
C180.3532 (3)0.1408 (2)0.7370 (2)0.0314 (5)
C190.2317 (3)0.1921 (2)0.6732 (2)0.0308 (5)
C200.3865 (3)0.0178 (3)0.6722 (2)0.0340 (5)
C210.2290 (5)0.4426 (5)0.4552 (4)0.0845 (12)
H21A0.26960.37330.42160.127*
H21B0.20830.49360.39560.127*
H21C0.13700.40630.46260.127*
C220.3128 (7)0.6469 (4)0.6359 (6)0.1041 (18)
H22A0.40440.69950.70880.156*
H22B0.23230.63500.66660.156*
H22C0.28690.68970.56920.156*
N30.3350 (3)0.5228 (3)0.5809 (2)0.0490 (6)
C230.4569 (4)0.4849 (4)0.6420 (4)0.0633 (9)
H230.52580.54000.72450.076*
O50.4840 (3)0.3805 (2)0.5953 (3)0.0700 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0417 (2)0.0314 (2)0.02085 (19)0.01603 (14)0.00811 (14)0.00282 (13)
O1W0.0483 (11)0.0443 (11)0.0639 (14)0.0135 (9)0.0265 (10)0.0044 (10)
N10.0378 (11)0.0313 (11)0.0256 (10)0.0106 (9)0.0101 (9)0.0051 (8)
N20.0345 (10)0.0324 (10)0.0259 (10)0.0096 (8)0.0121 (8)0.0084 (8)
O10.0850 (17)0.0556 (14)0.0610 (14)0.0422 (13)0.0300 (13)0.0051 (11)
O20.0464 (10)0.0414 (10)0.0252 (9)0.0210 (8)0.0080 (8)0.0017 (7)
O30.0598 (12)0.0410 (10)0.0261 (9)0.0268 (9)0.0061 (8)0.0038 (8)
O40.0499 (11)0.0577 (12)0.0329 (10)0.0296 (10)0.0074 (9)0.0066 (9)
C10.0441 (14)0.0377 (14)0.0369 (14)0.0175 (12)0.0148 (12)0.0074 (11)
C20.0518 (17)0.0425 (15)0.0467 (16)0.0213 (13)0.0221 (14)0.0070 (13)
C30.0533 (16)0.0370 (14)0.0407 (15)0.0119 (12)0.0244 (13)−0.0006 (12)
C40.0425 (14)0.0337 (13)0.0271 (12)0.0047 (11)0.0156 (11)0.0017 (10)
C50.0525 (16)0.0460 (16)0.0281 (13)0.0048 (13)0.0151 (12)−0.0024 (12)
C60.0450 (15)0.0537 (17)0.0234 (12)0.0048 (13)0.0049 (11)0.0067 (12)
C70.0355 (13)0.0408 (14)0.0286 (12)0.0043 (11)0.0102 (10)0.0100 (11)
C80.0400 (14)0.0555 (17)0.0362 (14)0.0144 (13)0.0077 (11)0.0200 (13)
C90.0469 (16)0.0496 (17)0.0485 (17)0.0248 (13)0.0182 (13)0.0203 (14)
C100.0422 (14)0.0361 (13)0.0363 (14)0.0142 (11)0.0171 (11)0.0092 (11)
C110.0326 (12)0.0316 (12)0.0255 (11)0.0061 (10)0.0121 (10)0.0077 (10)
C120.0333 (12)0.0320 (12)0.0262 (12)0.0062 (10)0.0133 (10)0.0069 (10)
C130.0571 (17)0.0447 (16)0.0430 (16)0.0221 (13)0.0259 (14)0.0105 (13)
C140.0421 (14)0.0314 (13)0.0337 (13)0.0072 (11)0.0204 (11)0.0053 (10)
C150.0521 (16)0.0328 (13)0.0371 (14)0.0061 (12)0.0198 (12)−0.0034 (11)
C160.0530 (17)0.0463 (16)0.0326 (14)0.0055 (13)0.0094 (13)−0.0063 (12)
C170.0402 (14)0.0431 (15)0.0329 (14)0.0097 (12)0.0101 (11)0.0047 (12)
C180.0348 (12)0.0314 (12)0.0265 (12)0.0057 (10)0.0131 (10)0.0057 (10)
C190.0353 (12)0.0303 (12)0.0271 (12)0.0061 (10)0.0156 (10)0.0055 (10)
C200.0388 (13)0.0391 (14)0.0254 (12)0.0138 (11)0.0129 (11)0.0092 (11)
C210.072 (3)0.098 (3)0.073 (3)0.031 (2)0.010 (2)0.031 (2)
C220.140 (5)0.056 (2)0.152 (5)0.046 (3)0.091 (4)0.033 (3)
N30.0601 (16)0.0423 (13)0.0492 (15)0.0193 (11)0.0253 (13)0.0121 (11)
C230.062 (2)0.065 (2)0.056 (2)0.0156 (18)0.0195 (17)0.0136 (17)
O50.0769 (17)0.0578 (15)0.0774 (17)0.0293 (13)0.0319 (14)0.0145 (13)

Geometric parameters (Å, °)

Cu1—O21.9012 (18)C8—C91.374 (4)
Cu1—O31.9071 (18)C8—H80.9300
Cu1—N12.020 (2)C9—C101.394 (4)
Cu1—N22.033 (2)C9—H90.9300
Cu1—O1W2.329 (2)C10—H100.9300
O1W—H1WA0.8500C11—C121.435 (4)
O1W—H1WB0.8500C13—C141.448 (4)
N1—C11.328 (3)C13—H130.9300
N1—C121.359 (3)C14—C151.403 (4)
N2—C101.330 (3)C14—C191.421 (3)
N2—C111.356 (3)C15—C161.366 (5)
O1—C131.215 (4)C15—H150.9300
O2—C191.315 (3)C16—C171.379 (4)
O3—C201.284 (3)C16—H160.9300
O4—C201.231 (3)C17—C181.386 (4)
C1—C21.403 (4)C17—H170.9300
C1—H10.9300C18—C191.426 (4)
C2—C31.354 (4)C18—C201.502 (3)
C2—H20.9300C21—N31.408 (5)
C3—C41.420 (4)C21—H21A0.9600
C3—H30.9300C21—H21B0.9600
C4—C121.395 (3)C21—H21C0.9600
C4—C51.427 (4)C22—N31.428 (5)
C5—C61.352 (4)C22—H22A0.9600
C5—H50.9300C22—H22B0.9600
C6—C71.434 (4)C22—H22C0.9600
C6—H60.9300N3—C231.332 (5)
C7—C111.400 (3)C23—O51.240 (4)
C7—C81.401 (4)C23—H230.9300
O2—Cu1—O394.58 (8)C9—C10—H10119.0
O2—Cu1—N1172.36 (8)N2—C11—C7123.8 (2)
O3—Cu1—N189.63 (8)N2—C11—C12116.4 (2)
O2—Cu1—N293.28 (8)C7—C11—C12119.8 (2)
O3—Cu1—N2166.80 (9)N1—C12—C4123.4 (2)
N1—Cu1—N281.45 (8)N1—C12—C11116.5 (2)
O2—Cu1—O1W95.02 (8)C4—C12—C11120.1 (2)
O3—Cu1—O1W96.84 (9)O1—C13—C14125.5 (3)
N1—Cu1—O1W90.80 (8)O1—C13—H13117.2
N2—Cu1—O1W93.03 (8)C14—C13—H13117.2
Cu1—O1W—H1WA114.5C15—C14—C19120.6 (3)
Cu1—O1W—H1WB115.6C15—C14—C13118.5 (2)
H1WA—O1W—H1WB107.7C19—C14—C13121.0 (2)
C1—N1—C12118.3 (2)C16—C15—C14120.7 (3)
C1—N1—Cu1128.79 (18)C16—C15—H15119.6
C12—N1—Cu1112.92 (16)C14—C15—H15119.6
C10—N2—C11117.8 (2)C15—C16—C17119.3 (3)
C10—N2—Cu1129.47 (18)C15—C16—H16120.3
C11—N2—Cu1112.70 (16)C17—C16—H16120.3
C19—O2—Cu1123.98 (16)C16—C17—C18122.8 (3)
C20—O3—Cu1126.98 (17)C16—C17—H17118.6
N1—C1—C2121.9 (3)C18—C17—H17118.6
N1—C1—H1119.1C17—C18—C19118.9 (2)
C2—C1—H1119.1C17—C18—C20116.5 (2)
C3—C2—C1120.3 (3)C19—C18—C20124.5 (2)
C3—C2—H2119.8O2—C19—C14117.8 (2)
C1—C2—H2119.8O2—C19—C18124.5 (2)
C2—C3—C4119.2 (2)C14—C19—C18117.7 (2)
C2—C3—H3120.4O4—C20—O3120.9 (2)
C4—C3—H3120.4O4—C20—C18119.2 (2)
C12—C4—C3116.9 (2)O3—C20—C18119.9 (2)
C12—C4—C5119.1 (2)N3—C21—H21A109.5
C3—C4—C5124.0 (2)N3—C21—H21B109.5
C6—C5—C4121.1 (2)H21A—C21—H21B109.5
C6—C5—H5119.5N3—C21—H21C109.5
C4—C5—H5119.5H21A—C21—H21C109.5
C5—C6—C7121.1 (2)H21B—C21—H21C109.5
C5—C6—H6119.4N3—C22—H22A109.5
C7—C6—H6119.4N3—C22—H22B109.5
C11—C7—C8117.1 (2)H22A—C22—H22B109.5
C11—C7—C6118.8 (2)N3—C22—H22C109.5
C8—C7—C6124.1 (2)H22A—C22—H22C109.5
C9—C8—C7119.0 (2)H22B—C22—H22C109.5
C9—C8—H8120.5C23—N3—C21119.7 (3)
C7—C8—H8120.5C23—N3—C22121.6 (4)
C8—C9—C10120.3 (3)C21—N3—C22118.5 (4)
C8—C9—H9119.9O5—C23—N3123.8 (3)
C10—C9—H9119.9O5—C23—H23118.1
N2—C10—C9122.1 (2)N3—C23—H23118.1
N2—C10—H10119.0
O3—Cu1—N1—C1−11.6 (2)C8—C7—C11—N2−0.1 (4)
N2—Cu1—N1—C1178.2 (2)C6—C7—C11—N2179.4 (2)
O1W—Cu1—N1—C185.2 (2)C8—C7—C11—C12−179.5 (2)
O3—Cu1—N1—C12170.25 (17)C6—C7—C11—C120.0 (3)
N2—Cu1—N1—C120.02 (16)C1—N1—C12—C41.3 (4)
O1W—Cu1—N1—C12−92.91 (17)Cu1—N1—C12—C4179.64 (18)
O2—Cu1—N2—C106.0 (2)C1—N1—C12—C11−178.4 (2)
O3—Cu1—N2—C10132.5 (3)Cu1—N1—C12—C110.0 (3)
N1—Cu1—N2—C10−179.5 (2)C3—C4—C12—N1−0.6 (4)
O1W—Cu1—N2—C10−89.2 (2)C5—C4—C12—N1−179.8 (2)
O2—Cu1—N2—C11−174.44 (16)C3—C4—C12—C11179.0 (2)
O3—Cu1—N2—C11−48.0 (4)C5—C4—C12—C11−0.1 (4)
N1—Cu1—N2—C11−0.01 (15)N2—C11—C12—N10.0 (3)
O1W—Cu1—N2—C1190.35 (16)C7—C11—C12—N1179.4 (2)
O3—Cu1—O2—C1921.4 (2)N2—C11—C12—C4−179.7 (2)
N2—Cu1—O2—C19−169.2 (2)C7—C11—C12—C4−0.3 (3)
O1W—Cu1—O2—C19−75.9 (2)O1—C13—C14—C154.5 (5)
O2—Cu1—O3—C20−26.0 (2)O1—C13—C14—C19−175.7 (3)
N1—Cu1—O3—C20160.4 (2)C19—C14—C15—C160.5 (4)
N2—Cu1—O3—C20−152.3 (3)C13—C14—C15—C16−179.7 (3)
O1W—Cu1—O3—C2069.7 (2)C14—C15—C16—C17−0.9 (5)
C12—N1—C1—C2−1.1 (4)C15—C16—C17—C180.8 (5)
Cu1—N1—C1—C2−179.2 (2)C16—C17—C18—C19−0.3 (4)
N1—C1—C2—C30.3 (4)C16—C17—C18—C20−178.7 (3)
C1—C2—C3—C40.3 (4)Cu1—O2—C19—C14168.07 (16)
C2—C3—C4—C12−0.2 (4)Cu1—O2—C19—C18−12.3 (3)
C2—C3—C4—C5178.9 (3)C15—C14—C19—O2179.7 (2)
C12—C4—C5—C60.8 (4)C13—C14—C19—O2−0.1 (4)
C3—C4—C5—C6−178.3 (3)C15—C14—C19—C180.1 (4)
C4—C5—C6—C7−1.1 (4)C13—C14—C19—C18−179.7 (2)
C5—C6—C7—C110.7 (4)C17—C18—C19—O2−179.8 (2)
C5—C6—C7—C8−179.9 (3)C20—C18—C19—O2−1.5 (4)
C11—C7—C8—C90.0 (4)C17—C18—C19—C14−0.2 (3)
C6—C7—C8—C9−179.4 (3)C20—C18—C19—C14178.1 (2)
C7—C8—C9—C100.0 (4)Cu1—O3—C20—O4−162.1 (2)
C11—N2—C10—C9−0.2 (4)Cu1—O3—C20—C1819.6 (3)
Cu1—N2—C10—C9179.35 (19)C17—C18—C20—O4−2.0 (4)
C8—C9—C10—N20.1 (4)C19—C18—C20—O4179.7 (2)
C10—N2—C11—C70.2 (3)C17—C18—C20—O3176.3 (2)
Cu1—N2—C11—C7−179.38 (18)C19—C18—C20—O3−2.0 (4)
C10—N2—C11—C12179.6 (2)C21—N3—C23—O5−0.7 (6)
Cu1—N2—C11—C120.0 (3)C22—N3—C23—O5−176.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.851.912.741 (3)167
O1W—H1WA···O50.851.962.794 (3)167

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2199).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, W., Cui, Q., Chang, L. & Yu, Z. (2008). Acta Cryst. E64, m294. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography