PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m479–m480.
Published online 2009 April 2. doi:  10.1107/S1600536809011994
PMCID: PMC2977548

2,9-Dimethyl-4,7-diphenyl-1,10-phenanthrolin-1-ium tetra­chloridoaurate(III)

Abstract

Both the cation and anion of the title compound, (C26H21N2)[AuCl4], are disposed about a plane of mirror symmetry. The 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinium ring is oriented at a dihedral angle of 44.2 (1)° with respect to the planar phenyl ring systems. The AuIII atom has a square-planar environment defined by four Cl atoms. The crystal structure is stabilized by C—H(...)π and Au(...)π ring–metal (3.551 Å) inter­actions. In the crystal structure, the mol­ecules stack along the c axis via N—H(...)N hydrogen-bond inter­actions.

Related literature

For general background to proton-transfer systems and their structures, see: Abedi et al. (2008 [triangle]); Amani et al. (2008 [triangle]); Calleja et al. (2001 [triangle]); Hasan et al. (1999 [triangle]); Hojjat Kashani et al. (2008 [triangle]); Johnson & Steed (1998 [triangle]); Karaca et al. (2009 [triangle]); Yap et al. (1995 [triangle]); Zhang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m479-scheme1.jpg

Experimental

Crystal data

  • (C26H21N2)[AuCl4]
  • M r = 700.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m479-efi2.jpg
  • a = 13.5195 (10) Å
  • b = 22.9565 (17) Å
  • c = 7.5556 (6) Å
  • V = 2345.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.75 mm−1
  • T = 150 K
  • 0.20 × 0.06 × 0.04 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.345, T max = 0.774
  • 24337 measured reflections
  • 3265 independent reflections
  • 2835 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.054
  • S = 1.03
  • 3265 reflections
  • 159 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.85 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011994/hg2496sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011994/hg2496Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NS and VA are grateful to Shahid Beheshti University for financial support.

supplementary crystallographic information

Comment

In recent years, there has been considerable interest in proton transfer systems and their structures (Amani et al., 2008; Abedi et al., 2008; Karaca et al., 2009). Several proton transfer systems using HAuCl4 with proton acceptor molecules, such as [EMI][AuCl4] and [BMI]2[AuCl4].2H2O (Hasan et al., 1999), [H2bipy][AuCl4][Cl] (Zhang et al., 2006), [H7O3][15-crown-5][AuCl4] and [H5O2][benzo-15-crown-5]2[AuCl4] (Johnson & Steed, 1998), [H5O2]2[12-crown-4]2[AuCl4]2, [H3O][18-crown-6][AuCl4] and [H3O][4-nitrobenzo-18-crown-6][AuCl4] (Calleja et al., 2001), [DPpy.H][AuCl4] (Yap et al., 1995) and [H2DA18C6][AuCl4].2H2O (Hojjat Kashani et al., 2008) [where EMI is 1-ethyl-3-methylimidazolium,BMI is 1-butyl-3-methylimidazolium, H2bipy is 2, 2'-bipyridinium, DPpy.H is 2,6-diphenylpyridinium and H2DA18C6 is 1,10-diazonia-18-crown-6] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

Both the cation and anion of the title compound (Fig. 1) are disposed about a plane of mirror symmetry. The 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline ring is oriented at a dihedral angle of 44.2 (1)° with respect to the planar phenyl ring systems. The Au ion has a square-planar environment defined by four Cl atoms. In AuCl4 anion, the Au—Cl bond lengths and Cl—Au—Cl bond angles are normal ranges. In the crystal structure, there exist ring-metal interactions [Cg2···Au1(x, y, z) = 3.551 Å and Cg2···Au1(x, 1/2 - y, z) = 3.551 Å, where Cg2 is a centroid of the central benzene ring (C5–C7/C5b–C7b) of the cation molecule]. For C1—H1B···Cg3 interaction, C1···Cg3 = 3.574Å, where Cg3 is a centroid of the phenyl ring (C8 –C13) (Table 2). View of the packing of (I) down the c-axis is given in Fig. 2.

Experimental

For the preparation of the title compound, a solution of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (0.15 g, 0.44 mmol) in HCCl3 (10 ml) was added to a solution of HAuCl4.3H2O, (0.17 g, 0.44 mmol) in ethanol (5 ml) and the resulting yellow solution was stirred for 15 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of the title compound were isolated [yield; 0.23 g; 72.1%; m. p. 495 K].

Refinement

All H atoms were seen in the difference electron density map. The H atom HN1 bound to atom N1 were refined isotropically. Since the anion group of the title molecule has symmetrically two parts, the site occupation factor of the HN1 atom were fixed at the value of 0.5. The other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.96 Å and with Uiso(H) = 1.2 or 1.5Ueq(C). The highest residual peak is located 0.87 Å from atom Au1 and the deepest hole is located 0.57 Å from atom Au1.

Figures

Fig. 1.
ORTEP drawing of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level [Symmetry codes: (a and b) x, 1/2 - y, z].
Fig. 2.
The packing of the title compound viewed down c axis.

Crystal data

(C26H21N2)[AuCl4]F(000) = 1352
Mr = 700.22Dx = 1.983 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 5918 reflections
a = 13.5195 (10) Åθ = 2.8–27.6°
b = 22.9565 (17) ŵ = 6.75 mm1
c = 7.5556 (6) ÅT = 150 K
V = 2345.0 (3) Å3Prism, yellow
Z = 40.20 × 0.06 × 0.04 mm

Data collection

Bruker APEXII CCD diffractometer3265 independent reflections
Radiation source: sealed tube2835 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 29.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −18→18
Tmin = 0.345, Tmax = 0.774k = −31→31
24337 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.026P)2 + 1.1102P] where P = (Fo2 + 2Fc2)/3
3265 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = −0.60 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N10.51546 (16)0.19238 (10)0.0058 (3)0.0203 (7)
C10.61127 (19)0.10789 (13)−0.0819 (4)0.0271 (8)
C20.52022 (19)0.13465 (11)−0.0049 (3)0.0202 (8)
C30.4389 (2)0.10119 (12)0.0488 (4)0.0219 (8)
C40.3533 (2)0.12606 (12)0.1132 (3)0.0200 (7)
C50.35028 (19)0.18757 (11)0.1303 (3)0.0181 (7)
C60.43300 (19)0.21879 (11)0.0701 (3)0.0190 (7)
C70.27048 (18)0.22031 (10)0.2068 (3)0.0182 (7)
C80.26628 (19)0.08820 (11)0.1485 (3)0.0199 (7)
C90.2791 (2)0.03400 (11)0.2301 (4)0.0237 (8)
C100.2004 (2)−0.00427 (12)0.2445 (4)0.0272 (8)
C110.1082 (2)0.01067 (13)0.1803 (4)0.0279 (8)
C120.0937 (2)0.06484 (13)0.1013 (4)0.0263 (8)
C130.1724 (2)0.10337 (12)0.0840 (3)0.0230 (8)
Au10.38322 (1)0.250000.60223 (2)0.0219 (1)
Cl10.53754 (7)0.250000.48086 (15)0.0343 (3)
Cl20.38270 (5)0.15042 (4)0.60263 (10)0.0336 (2)
Cl30.22961 (7)0.250000.72842 (14)0.0298 (3)
HN10.556 (4)0.212 (2)−0.029 (7)0.009 (14)*0.500
H1A0.596800.09310−0.197900.0410*
H1B0.633100.07660−0.007400.0410*
H1C0.662400.13680−0.089900.0410*
H30.442800.060800.040600.0260*
H70.217600.200500.257600.0220*
H90.340700.023700.274900.0280*
H100.20980−0.040400.297900.0330*
H110.05590−0.015400.189800.0340*
H120.031300.075200.060100.0310*
H130.162800.139300.029600.0280*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0164 (11)0.0215 (11)0.0230 (12)−0.0001 (9)0.0006 (9)0.0006 (9)
C10.0232 (14)0.0249 (14)0.0333 (16)0.0047 (11)0.0024 (12)−0.0025 (12)
C20.0215 (13)0.0200 (13)0.0191 (13)0.0039 (10)−0.0020 (10)−0.0022 (10)
C30.0242 (14)0.0194 (13)0.0220 (13)0.0028 (10)−0.0005 (10)−0.0008 (10)
C40.0204 (12)0.0205 (12)0.0192 (12)−0.0002 (10)−0.0012 (10)0.0019 (10)
C50.0176 (11)0.0199 (12)0.0167 (12)0.0000 (10)−0.0030 (9)0.0014 (9)
C60.0186 (12)0.0205 (13)0.0180 (12)0.0000 (10)−0.0032 (9)0.0014 (10)
C70.0174 (11)0.0204 (12)0.0168 (12)−0.0035 (9)0.0008 (9)−0.0002 (10)
C80.0207 (12)0.0198 (12)0.0193 (12)−0.0009 (10)0.0004 (10)−0.0022 (10)
C90.0226 (12)0.0229 (13)0.0256 (14)0.0033 (10)0.0005 (11)0.0017 (11)
C100.0325 (15)0.0208 (13)0.0284 (15)0.0018 (11)0.0057 (12)0.0040 (11)
C110.0292 (14)0.0266 (14)0.0280 (15)−0.0071 (12)0.0058 (12)−0.0028 (12)
C120.0218 (13)0.0292 (15)0.0278 (14)0.0010 (11)−0.0015 (11)−0.0031 (12)
C130.0246 (14)0.0210 (13)0.0233 (13)0.0025 (10)−0.0018 (11)−0.0004 (10)
Au10.0177 (1)0.0292 (1)0.0187 (1)0.0000−0.0022 (1)0.0000
Cl10.0186 (4)0.0474 (6)0.0370 (6)0.00000.0020 (4)0.0000
Cl20.0326 (4)0.0297 (4)0.0386 (4)0.0049 (3)0.0006 (3)0.0074 (3)
Cl30.0212 (4)0.0383 (6)0.0298 (5)0.00000.0043 (4)0.0000

Geometric parameters (Å, °)

Au1—Cl2i2.2860 (9)C8—C131.404 (4)
Au1—Cl32.2852 (10)C8—C91.399 (4)
Au1—Cl12.2790 (10)C9—C101.384 (4)
Au1—Cl22.2860 (9)C10—C111.381 (4)
N1—C21.329 (3)C11—C121.393 (4)
N1—C61.359 (3)C12—C131.390 (4)
N1—HN10.76 (5)C1—H1B0.9600
C1—C21.494 (4)C1—H1C0.9600
C2—C31.401 (4)C1—H1A0.9600
C3—C41.379 (4)C3—H30.9300
C4—C51.419 (4)C7—H70.9300
C4—C81.487 (4)C9—H90.9300
C5—C61.404 (4)C10—H100.9300
C5—C71.436 (3)C11—H110.9300
C6—C6i1.433 (4)C12—H120.9300
C7—C7i1.363 (3)C13—H130.9300
Au1···C7i3.423 (2)C13···C73.135 (4)
Au1···C73.423 (2)C3···H10xii3.1000
Cl1···Cl3ii3.4011 (15)C3···H92.8000
Cl1···C7iii3.520 (3)C5···H132.8700
Cl1···Cl23.2333 (11)C7···H132.7100
Cl1···C63.485 (3)C8···H10xii2.8900
Cl1···Cl3iv3.4011 (15)C8···H72.7900
Cl1···C7v3.520 (3)C9···H32.7100
Cl1···Cl2i3.2333 (11)C9···H1Bix3.0400
Cl1···C6i3.485 (3)C10···H1Bix2.8700
Cl2···Cl13.2333 (11)C11···H1Bix2.9200
Cl2···C3vi3.636 (3)C13···H10xii3.0500
Cl2···Cl33.2269 (11)C13···H72.6600
Cl2···C2vi3.519 (2)HN1···Cl3iii2.92 (5)
Cl3···Cl1vii3.4011 (15)HN1···H1C2.2900
Cl3···Cl23.2269 (11)HN1···Cl3v2.92 (5)
Cl3···Cl1viii3.4011 (15)HN1···N1i2.28 (5)
Cl3···Cl2i3.2269 (11)H1B···C11iii2.9200
Cl1···H13v3.0500H1B···C10iii2.8700
Cl1···H13iii3.0500H1B···C9iii3.0400
Cl2···H12iii2.9200H1C···HN12.2900
Cl2···H1Cix3.0000H1C···Cl3v2.9500
Cl3···HN1x2.92 (5)H1C···Cl2iii3.0000
Cl3···HN1ix2.92 (5)H1C···Cl3iii2.9500
Cl3···H1Cx2.9500H3···H92.4000
Cl3···H1Cix2.9500H3···C92.7100
N1···N1i2.646 (3)H7···C132.6600
N1···HN1i2.28 (5)H7···C82.7900
C2···C12iii3.585 (4)H7···H132.3400
C2···Cl2xi3.519 (2)H9···H32.4000
C3···C12iii3.474 (4)H9···C32.8000
C3···Cl2xi3.636 (3)H10···C13xiii3.0500
C6···Cl13.485 (3)H10···C3xiii3.1000
C6···Cl13.485 (3)H10···C8xiii2.8900
C7···C133.135 (4)H12···Cl2ix2.9200
C7···Au13.423 (2)H13···C72.7100
C7···Au13.423 (2)H13···H72.3400
C7···Cl1ix3.520 (3)H13···Cl1x3.0500
C7···Cl1x3.520 (3)H13···Cl1ix3.0500
C12···C3ix3.474 (4)H13···C52.8700
C12···C2ix3.585 (4)
Cl1—Au1—Cl3179.07 (4)C8—C9—C10120.3 (3)
Cl1—Au1—Cl2i90.19 (2)C9—C10—C11120.6 (3)
Cl2—Au1—Cl389.81 (2)C10—C11—C12120.0 (3)
Cl2—Au1—Cl2i179.62 (3)C11—C12—C13120.0 (3)
Cl2i—Au1—Cl389.81 (2)C8—C13—C12120.1 (2)
Cl1—Au1—Cl290.19 (2)H1A—C1—H1C109.00
C2—N1—C6120.4 (2)C2—C1—H1A109.00
C6—N1—HN1117 (4)C2—C1—H1B109.00
C2—N1—HN1123 (4)C2—C1—H1C109.00
C1—C2—C3122.3 (2)H1A—C1—H1B109.00
N1—C2—C3119.4 (2)H1B—C1—H1C109.00
N1—C2—C1118.3 (2)C2—C3—H3119.00
C2—C3—C4122.3 (3)C4—C3—H3119.00
C3—C4—C8119.0 (2)C7i—C7—H7119.00
C5—C4—C8122.9 (2)C5—C7—H7119.00
C3—C4—C5117.9 (2)C8—C9—H9120.00
C6—C5—C7117.5 (2)C10—C9—H9120.00
C4—C5—C7125.4 (2)C9—C10—H10120.00
C4—C5—C6117.1 (2)C11—C10—H10120.00
C5—C6—C6i120.7 (2)C12—C11—H11120.00
N1—C6—C6i116.5 (2)C10—C11—H11120.00
N1—C6—C5122.8 (2)C11—C12—H12120.00
C5—C7—C7i121.6 (2)C13—C12—H12120.00
C4—C8—C13120.6 (2)C12—C13—H13120.00
C9—C8—C13119.1 (2)C8—C13—H13120.00
C4—C8—C9120.1 (2)
C6—N1—C2—C1178.1 (2)C7—C5—C6—N1175.7 (2)
C6—N1—C2—C30.8 (4)C7—C5—C6—C6i−5.8 (3)
C2—N1—C6—C51.0 (4)C4—C5—C7—C7i−175.3 (2)
C2—N1—C6—C6i−177.6 (2)C6—C5—C7—C7i5.9 (3)
N1—C2—C3—C4−0.1 (4)N1—C6—C6i—N1i0.0 (3)
C1—C2—C3—C4−177.3 (3)N1—C6—C6i—C5i178.6 (2)
C2—C3—C4—C5−2.2 (4)C5—C6—C6i—N1i−178.6 (2)
C2—C3—C4—C8173.2 (2)C5—C6—C6i—C5i0.0 (4)
C3—C4—C5—C63.7 (3)C5—C7—C7i—C5i0.0 (4)
C3—C4—C5—C7−175.1 (2)C4—C8—C9—C10−172.4 (2)
C8—C4—C5—C6−171.5 (2)C13—C8—C9—C100.9 (4)
C8—C4—C5—C79.6 (4)C4—C8—C13—C12173.2 (2)
C3—C4—C8—C942.3 (3)C9—C8—C13—C12−0.1 (4)
C3—C4—C8—C13−130.8 (3)C8—C9—C10—C11−0.6 (4)
C5—C4—C8—C9−142.5 (3)C9—C10—C11—C12−0.4 (5)
C5—C4—C8—C1344.4 (3)C10—C11—C12—C131.3 (4)
C4—C5—C6—N1−3.2 (3)C11—C12—C13—C8−1.0 (4)
C4—C5—C6—C6i175.3 (2)

Symmetry codes: (i) x, −y+1/2, z; (ii) x+1/2, y, −z+3/2; (iii) x+1/2, y, −z+1/2; (iv) x+1/2, −y+1/2, −z+3/2; (v) x+1/2, −y+1/2, −z+1/2; (vi) x, y, z+1; (vii) x−1/2, y, −z+3/2; (viii) x−1/2, −y+1/2, −z+3/2; (ix) x−1/2, y, −z+1/2; (x) x−1/2, −y+1/2, −z+1/2; (xi) x, y, z−1; (xii) −x+1/2, −y, z−1/2; (xiii) −x+1/2, −y, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—HN1···N1i0.76 (5)2.28 (5)2.646 (3)111 (4)
C1—H1B···Cg3iii0.962.763.574 (3)143

Symmetry codes: (i) x, −y+1/2, z; (iii) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2496).

References

  • Abedi, A., Bahrami Shabestari, A. & Amani, V. (2008). Acta Cryst. E64, o990. [PMC free article] [PubMed]
  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Amani, V., Rahimi, R. & Khavasi, H. R. (2008). Acta Cryst. E64, m1143–m1144. [PMC free article] [PubMed]
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem.40, 4978–4985. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). Inorg. Chem.38, 5637–5641.
  • Hojjat Kashani, L., Yousefi, M., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m840–m841. [PMC free article] [PubMed]
  • Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479–1480.
  • Karaca, S., Akkurt, M., Safari, N., Amani, V., Büyükgüngör, O. & Abedi, A. (2009). Acta Cryst. E65, m235. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). Inorg. Chem.34, 3474–3476.
  • Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018–m2020.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography