PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): m476.
Published online 2009 April 2. doi:  10.1107/S1600536809011738
PMCID: PMC2977545

Tetra­aqua­bis[4-(4-pyrid­yl)pyrimidine-2-sulfonato]copper(II) dihydrate

Abstract

In the title complex, [Cu(C9H6N3O3S)2(H2O)4]·2H2O, the CuII atom lies on an inversion centre and is coordinated by four water mol­ecules in equatorial positions and two N atoms from two 4-(4-pyrid­yl)pyrimidine-2-sulfonate ligands in apical positions. The asymmetric unit contains half of the complex and one free water mol­ecule. The water mol­ecules, including the uncoordinated water mol­ecules, and sulfonate O atoms are involved in O—H(...)O and O—H(...)N hydrogen-bonding inter­actions.

Related literature

For coordination complexes with pyridine-2 sulfonate ligands, see: Kimura et al. (1999 [triangle]); Lobana et al. (2004 [triangle]). For coordination complexes with 4-(pyridin-2-yl)pyrimidine-2-sulfonate, see: Zhu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m476-scheme1.jpg

Experimental

Crystal data

  • [Cu(C9H6N3O3S)2(H2O)4]·2H2O
  • M r = 644.09
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m476-efi1.jpg
  • a = 8.0727 (11) Å
  • b = 12.1502 (16) Å
  • c = 13.4911 (17) Å
  • β = 95.123 (2)°
  • V = 1318.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.06 mm−1
  • T = 298 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.884, T max = 0.920
  • 7057 measured reflections
  • 2459 independent reflections
  • 1786 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.105
  • S = 1.00
  • 2459 reflections
  • 197 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011738/at2756sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011738/at2756Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge finanical support from the National Natural Science Foundation of China (No. 20801011) and the Young Teachers’ Starting Fund of Southeast University.

supplementary crystallographic information

Comment

The coordination chemistry of some heterocyclic sulfonate ligands has been examined in several reports (Kimura et al., 1999; Lobana et al. 2004). In our previous work (Zhu et al., 2007), we have also studied divalent metal coordination complexes with the heterocyclic sulfonate ligand, namely 4-(pyridin-2-yl)pyrimidine-2-sulfonate. Herein, we report the copper(II) coordination complex with its analog, viz 4-(pyridin-4-yl)pyrimidine-2-sulfonate.

The coordination geometry about Cu(II) center is shown in Fig.1. The Cu(II) center adopts an octahedral coordination geometry. The equtorial plane around the copper ion is defined by four water molecules and the apical positions are occupied by two nitrogen atoms belonging to two heterocyclic sulfonate ligands. In the title complex, the CuII atom lies on an inversion centre and the asymmetric unit contains half of the complex and one free water molecule. The Cu—O bond lengths are in the range of 2.094 (6) to 2.289 (7) Å and the Cu—N bond distance is 2.008 (7) Å. The coordinated water molecules, the guest water molecules and the free sulfonato oxgen atoms are involved in the hydrogen bonding interactions (Table 1).

Experimental

The mixture of Cu(NO3)2 (0.1 mmol), sodium 4-(pyridin-4-yl)pyrimidine-2-sulfonate (0.2 mmol) in 6 mL of H2O was stirred for 20 min at room temperature. After filtration, the mother liquid was stood for three days to give the green crystals suitable for X-ray diffraction analysis.

Refinement

All H atoms bounded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å. The positions of the water H atoms were found from a difference Fourier map and the positions of the water H atoms were refined isotropically by fixing the Uiso to 0.080.

Figures

Fig. 1.
The coordination environment around Cu(II) in the title complex with the atom-labeling scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Crystal data

[Cu(C9H6N3O3S)2(H2O)4]·2H2OF(000) = 662
Mr = 644.09Dx = 1.623 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2459 reflections
a = 8.0727 (11) Åθ = 2.3–25.5°
b = 12.1502 (16) ŵ = 1.06 mm1
c = 13.4911 (17) ÅT = 298 K
β = 95.123 (2)°Block, blue
V = 1318.0 (3) Å30.12 × 0.10 × 0.08 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer2459 independent reflections
Radiation source: fine-focus sealed tube1786 reflections with I > 2σ(I)
graphiteRint = 0.079
[var phi] and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −9→9
Tmin = 0.884, Tmax = 0.920k = −14→12
7057 measured reflectionsl = −16→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.044P)2] where P = (Fo2 + 2Fc2)/3
2459 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.33 e Å3
9 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu11.00000.50000.50000.0309 (6)
S10.7319 (3)−0.21520 (17)0.67968 (16)0.0350 (7)
C10.7066 (10)−0.1463 (7)0.5611 (6)0.0296 (19)
C20.6103 (12)−0.1450 (8)0.3997 (7)0.044 (2)
H20.5582−0.17930.34360.053*
C30.6619 (11)−0.0369 (7)0.3918 (7)0.039 (2)
H30.64600.00090.33180.047*
C40.7378 (10)0.0130 (7)0.4763 (6)0.030 (2)
C50.8025 (10)0.1277 (6)0.4787 (6)0.0285 (19)
C60.7554 (11)0.2040 (7)0.4050 (6)0.037 (2)
H60.68230.18390.35080.044*
C70.8170 (11)0.3090 (7)0.4123 (7)0.037 (2)
H70.78320.35900.36240.044*
C80.9733 (11)0.2692 (7)0.5587 (6)0.032 (2)
H81.04960.29100.61070.038*
C90.9145 (11)0.1623 (7)0.5569 (6)0.033 (2)
H90.94970.11370.60770.040*
H1W0.707 (11)0.500 (5)0.480 (5)0.080*
H2W0.693 (10)0.617 (5)0.471 (6)0.080*
H3W0.881 (8)0.562 (5)0.658 (7)0.080*
H4W0.931 (11)0.455 (5)0.681 (6)0.080*
H5W0.531 (10)0.463 (9)0.341 (4)0.080*
H6W0.631 (7)0.518 (8)0.286 (6)0.080*
N10.7598 (8)−0.0431 (6)0.5630 (5)0.0307 (17)
N20.6322 (9)−0.2021 (6)0.4845 (5)0.0386 (19)
N30.9233 (9)0.3430 (5)0.4875 (5)0.0305 (16)
O10.8989 (8)−0.1917 (6)0.7206 (5)0.0557 (19)
O20.7032 (8)−0.3316 (5)0.6583 (5)0.0497 (18)
O30.6036 (8)−0.1672 (5)0.7337 (4)0.0464 (17)
O1W0.7375 (9)0.5611 (6)0.4501 (6)0.059 (2)
O2W0.9469 (8)0.5109 (5)0.6488 (5)0.0445 (17)
O3W0.5402 (9)0.4870 (7)0.2846 (6)0.062 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0474 (10)0.0141 (8)0.0317 (9)−0.0047 (7)0.0059 (7)0.0003 (6)
S10.0505 (15)0.0172 (12)0.0378 (14)0.0007 (10)0.0069 (11)0.0024 (9)
C10.037 (5)0.019 (4)0.033 (5)0.000 (4)0.008 (4)−0.003 (4)
C20.059 (6)0.033 (6)0.039 (6)−0.009 (5)−0.004 (5)−0.007 (5)
C30.056 (6)0.024 (5)0.036 (5)−0.006 (4)−0.001 (4)0.005 (4)
C40.035 (5)0.021 (5)0.034 (5)0.000 (4)0.003 (4)−0.001 (4)
C50.037 (5)0.017 (4)0.032 (5)−0.003 (4)0.005 (4)0.001 (4)
C60.043 (5)0.027 (5)0.038 (5)−0.005 (4)−0.006 (4)0.002 (4)
C70.046 (5)0.022 (5)0.040 (5)−0.001 (4)−0.004 (4)0.010 (4)
C80.044 (5)0.021 (5)0.030 (5)−0.004 (4)0.002 (4)−0.002 (4)
C90.049 (5)0.018 (4)0.033 (5)−0.001 (4)0.003 (4)0.006 (4)
N10.044 (4)0.017 (4)0.032 (4)−0.002 (3)0.005 (3)0.001 (3)
N20.055 (5)0.023 (4)0.038 (4)−0.007 (4)0.002 (4)0.000 (3)
N30.042 (4)0.018 (4)0.032 (4)−0.001 (3)0.005 (3)0.002 (3)
O10.056 (4)0.046 (5)0.062 (4)−0.001 (3)−0.011 (3)0.016 (4)
O20.080 (5)0.015 (3)0.056 (4)−0.001 (3)0.016 (4)0.003 (3)
O30.064 (4)0.037 (4)0.040 (4)0.008 (3)0.015 (3)−0.002 (3)
O1W0.068 (5)0.027 (4)0.083 (5)0.005 (4)0.007 (4)−0.012 (4)
O2W0.061 (4)0.024 (4)0.050 (4)0.003 (3)0.016 (3)0.006 (3)
O3W0.059 (5)0.058 (5)0.067 (5)−0.005 (4)−0.004 (4)0.009 (4)

Geometric parameters (Å, °)

Cu1—N32.008 (7)C4—N11.352 (10)
Cu1—N3i2.008 (7)C4—C51.487 (11)
Cu1—O2W2.094 (6)C5—C61.388 (11)
Cu1—O2Wi2.094 (6)C5—C91.391 (11)
Cu1—O1W2.289 (7)C6—C71.370 (12)
Cu1—O1Wi2.289 (7)C6—H60.9300
Cu1—H1W2.36 (9)C7—N31.335 (11)
Cu1—H3W2.53 (7)C7—H70.9300
S1—O11.439 (7)C8—N31.349 (10)
S1—O31.442 (6)C8—C91.382 (11)
S1—O21.458 (6)C8—H80.9300
S1—C11.801 (8)C9—H90.9300
C1—N11.324 (10)O1W—H1W0.89 (3)
C1—N21.334 (10)O1W—H2W0.83 (7)
C2—N21.336 (11)O2W—H3W0.83 (6)
C2—C31.385 (12)O2W—H4W0.82 (7)
C2—H20.9300O3W—H5W0.82 (6)
C3—C41.384 (12)O3W—H6W0.82 (7)
C3—H30.9300
N3—Cu1—N3i180.000 (1)N2—C2—C3122.7 (8)
N3—Cu1—O2W93.0 (3)N2—C2—H2118.7
N3i—Cu1—O2W87.0 (3)C3—C2—H2118.6
N3—Cu1—O2Wi87.0 (3)C2—C3—C4117.8 (8)
N3i—Cu1—O2Wi93.0 (3)C2—C3—H3121.1
O2W—Cu1—O2Wi180.000 (1)C4—C3—H3121.1
N3—Cu1—O1W90.7 (3)N1—C4—C3120.3 (8)
N3i—Cu1—O1W89.3 (3)N1—C4—C5115.8 (7)
O2W—Cu1—O1W89.9 (3)C3—C4—C5123.9 (8)
O2Wi—Cu1—O1W90.1 (3)C6—C5—C9117.3 (8)
N3—Cu1—O1Wi89.3 (3)C6—C5—C4122.5 (8)
N3i—Cu1—O1Wi90.7 (3)C9—C5—C4120.2 (7)
O2W—Cu1—O1Wi90.1 (3)C7—C6—C5119.7 (8)
O2Wi—Cu1—O1Wi89.9 (3)C7—C6—H6120.1
O1W—Cu1—O1Wi180.000 (1)C5—C6—H6120.1
N3—Cu1—H1W72.1 (15)N3—C7—C6123.2 (8)
N3i—Cu1—H1W107.9 (15)N3—C7—H7118.5
O2W—Cu1—H1W79.5 (18)C6—C7—H7118.4
O2Wi—Cu1—H1W100.5 (18)N3—C8—C9122.1 (8)
O1Wi—Cu1—H1W158.0 (4)N3—C8—H8119.0
N3—Cu1—H3W102.5 (19)C9—C8—H8119.0
N3i—Cu1—H3W77.5 (19)C8—C9—C5119.8 (8)
O2W—Cu1—H3W17.7 (12)C8—C9—H9120.1
O2Wi—Cu1—H3W162.3 (12)C5—C9—H9120.1
O1W—Cu1—H3W75.0 (16)C1—N1—C4116.4 (7)
O1Wi—Cu1—H3W105.0 (16)C1—N2—C2114.6 (8)
H1W—Cu1—H3W69 (3)C8—N3—C7117.9 (7)
O1—S1—O3114.6 (4)C8—N3—Cu1120.1 (6)
O1—S1—O2113.3 (4)C7—N3—Cu1122.0 (6)
O3—S1—O2112.6 (4)Cu1—O1W—H1W83 (6)
O1—S1—C1106.0 (4)Cu1—O1W—H2W126 (7)
O3—S1—C1103.4 (4)H1W—O1W—H2W112 (4)
O2—S1—C1105.8 (4)Cu1—O2W—H3W113 (6)
N1—C1—N2128.2 (8)Cu1—O2W—H4W121 (7)
N1—C1—S1114.4 (6)H3W—O2W—H4W114 (8)
N2—C1—S1117.4 (6)H5W—O3W—H6W107 (8)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2ii0.83 (7)2.60 (7)3.130 (9)123 (7)
O1W—H2W···N2ii0.83 (7)2.27 (4)3.047 (10)158 (7)
O2W—H4W···O3iii0.82 (7)1.91 (7)2.734 (9)175 (11)
O2W—H3W···O2ii0.83 (6)1.93 (6)2.756 (9)169 (10)
O2W—H3W···S1ii0.83 (6)2.99 (4)3.794 (7)163 (7)
O3W—H5W···O2iv0.82 (6)2.47 (7)2.879 (10)111 (6)

Symmetry codes: (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2756).

References

  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497-498.
  • Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356-367.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct 831, 55–60.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography