PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): i40.
Published online 2009 April 30. doi:  10.1107/S1600536809015554
PMCID: PMC2977544

An open-framework borophosphate, LiCu2BP2O8(OH)2

Abstract

The open-framework alkaline-earth metal borophosphate, lithium dicopper(II) borophosphate dihydroxide, LiCu2BP2O8(OH)2, was synthesized hydro­thermally. Its structure may be regarded as a layer formed via BO4 and PO4 tetra­hedra bonding together with distorted CuO6 and LiO6 octa­hedral units. Each P atom is connected to B, Li and Cu atoms through a bridging O atom. The B atom lies on a crystallographic twofold axis and the Li atom lies on a center of symmetry. The two metal centers are connected to each other by Cu—O—Li bonds.

Related literature

For chiral structures and potential applications in catalysis of borophosphates with the general formula AM(H2O)2[BP2O8].yH2O (A = Li, Na, K, NH4 +; M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) (y = 0.5–1), see: Ewald et al. (2007 [triangle]); Kniep et al. (1997 [triangle]). For related structures, see: Boy & Kniep (2001 [triangle]); Yang et al. (2008 [triangle]).

Experimental

Crystal data

  • LiCu2BP2O8(OH)2
  • M r = 368.79
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i40-efi1.jpg
  • a = 15.0974 (19) Å
  • b = 4.7617 (6) Å
  • c = 9.6585 (12) Å
  • β = 91.0190 (10)°
  • V = 694.23 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.64 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.350, T max = 0.398 (expected range = 0.285–0.324)
  • 4076 measured reflections
  • 925 independent reflections
  • 897 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.054
  • S = 1.18
  • 925 reflections
  • 79 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809015554/br2104sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015554/br2104Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Main Teacher Project of Henan Province (Reference 649082) and the Foundation of Graduate Produce (Reference 2008-M-17).

supplementary crystallographic information

Comment

In the last decade, much attention has been paid to the large family of borophosphates with the general formula AM(H2O)2[BP2O8].yH2O (A=Li, Na, K, NH4+; M=Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) (y = 0.5–1) due to their chiral structure property and potential applications for catalysts (Kniep et al., 1997; Ewald et al., 2007).

The crystal structure of LiCu2BP2O8(OH)2 contains one unique Li atom, two Cu atoms, one boron atom, two phosphor atoms, and eight oxygen atoms and two –OH groups in the asymmetric unit of the framework. The borophosphate units are isolated anions linked by the bonds them form to Cu, Li and H. (Fig.1) Each BO4 tetrahedron belongs to the adjacent CuO6 octahedra. The phosphorous atoms are allocated in regular tetrahedral environments with four types of oxygen atoms. Bond lengths and angles within the anionic partial structure are consistent with related borophosphates (Boy et al., 2001; Yang et al. 2008),. Li+ is coordinated by the oxygen functions groups of PO4 groups. Cu2+ is adjacent to six oxygen atoms, five from PO4 groups and one BO4 groups, but one of the five PO4 links (O3) is also bonded to BO4 (Fig.2)

Experimental

Blue block crystals were synthesized hydrothermally from a mixture of Cu(NO3)2, Li2B4O7,water and H3PO4. In a typical synthesis, 0.725 g Cu(NO3)2 were dissolved in a mixture of 5 mL water, 1.691 g Li2B4O7 and 2 ml (85%) H3PO4 with constant stirring. Finally,the mixture was kept in a 30 ml Teflon–lined steel autoclave at 443 K for 6days.The autoclave was slowly cooled to room temperature. Blue block crystals of thetitle compound were obtained.

Refinement

The H atoms of the coordinated water molecule were refined with Uiso(H)=2.4Ueq(O)and distance restraints d(O-H)of 0.86 (1)Å. The highest peak in the difference map is 0.63e/Å, and 0.77Å from O2, and the minimum peak is -0.53e/Å, and 0.70Å from Cu1.

Figures

Fig. 1.
The structure of LiCu2BP2O8(OH)2. Displacement ellipsoids are drawn at 50% the probability level.
Fig. 2.
Packing diagram of LiCu2BP2O8(OH)2,viewed along b axis.

Crystal data

LiCu2BP2O8(OH)2F(000) = 712
Mr = 368.79Dx = 3.528 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3236 reflections
a = 15.0974 (19) Åθ = 2.7–29.3°
b = 4.7617 (6) ŵ = 6.64 mm1
c = 9.6585 (12) ÅT = 296 K
β = 91.019 (1)°Block, blue
V = 694.23 (15) Å30.20 × 0.18 × 0.17 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer925 independent reflections
Radiation source: fine-focus sealed tube897 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 29.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −20→20
Tmin = 0.350, Tmax = 0.398k = −6→6
4076 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054w = 1/[σ2(Fo2) + (0.0258P)2 + 1.3109P] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
925 reflectionsΔρmax = 0.63 e Å3
79 parametersΔρmin = −0.52 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0350 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.350210 (15)1.20604 (5)0.77155 (2)0.00731 (13)
P20.35630 (3)0.67849 (9)0.58833 (5)0.00503 (14)
O30.44649 (9)0.5916 (3)0.65917 (14)0.0085 (3)
O20.34451 (9)0.9972 (3)0.59584 (13)0.0080 (3)
O10.28531 (9)0.5146 (3)0.66790 (13)0.0074 (3)
O50.35401 (9)0.5717 (3)0.44007 (13)0.0085 (3)
O40.44543 (9)0.9550 (3)0.83773 (13)0.0101 (3)
B0.50000.7756 (6)0.75000.0069 (5)
Li0.25001.25000.50000.0201 (11)
H40.425 (2)0.852 (6)0.901 (2)0.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01075 (17)0.00604 (17)0.00510 (16)0.00214 (8)−0.00107 (9)−0.00075 (7)
P20.0066 (2)0.0042 (2)0.0042 (2)−0.00019 (15)−0.00068 (16)0.00003 (15)
O30.0084 (6)0.0069 (6)0.0100 (6)0.0005 (5)−0.0034 (5)−0.0008 (5)
O20.0118 (6)0.0048 (6)0.0072 (6)0.0011 (5)−0.0018 (5)−0.0006 (5)
O10.0082 (6)0.0068 (6)0.0073 (6)0.0005 (5)0.0014 (4)0.0022 (5)
O50.0130 (7)0.0076 (6)0.0049 (6)0.0003 (5)−0.0001 (5)−0.0001 (5)
O40.0119 (6)0.0116 (7)0.0067 (6)0.0041 (5)0.0004 (5)0.0000 (5)
B0.0079 (13)0.0056 (12)0.0073 (13)0.000−0.0006 (10)0.000
Li0.021 (3)0.017 (2)0.022 (3)0.006 (2)−0.012 (2)−0.006 (2)

Geometric parameters (Å, °)

Cu1—O5i1.9415 (13)P2—O11.5420 (14)
Cu1—O21.9674 (14)P2—O31.5686 (14)
Cu1—O41.9676 (14)B—O4iv1.467 (2)
Cu1—O1ii2.0213 (13)B—O3iv1.471 (2)
Cu1—O1iii2.3242 (13)Li—O2v2.0723 (14)
P2—O51.5195 (13)Li—O1ii2.1143 (13)
P2—O21.5300 (15)Li—O5ii2.2758 (14)
O5i—Cu1—O2177.21 (6)P2—O5—Cu1viii127.40 (8)
O5i—Cu1—O492.77 (6)P2—O5—Livi89.42 (6)
O2—Cu1—O489.64 (6)Cu1viii—O5—Livi124.75 (6)
O5i—Cu1—O1ii91.48 (6)B—O4—Cu1125.51 (9)
O2—Cu1—O1ii85.80 (6)O4iv—B—O4108.8 (2)
O4—Cu1—O1ii161.34 (6)O4iv—B—O3108.09 (7)
O5i—Cu1—O1iii90.91 (5)O4—B—O3112.53 (8)
O2—Cu1—O1iii89.63 (5)O4iv—B—O3iv112.53 (8)
O4—Cu1—O1iii108.74 (6)O4—B—O3iv108.09 (7)
O1ii—Cu1—O1iii89.35 (3)O3—B—O3iv106.9 (2)
O5—P2—O2112.09 (8)O2—Li—O2v180.0
O5—P2—O1107.21 (8)O2—Li—O1ii80.86 (5)
O2—P2—O1113.33 (8)O2v—Li—O1ii99.14 (5)
O5—P2—O3109.13 (8)O2—Li—O1ix99.14 (5)
O2—P2—O3109.99 (8)O2v—Li—O1ix80.86 (5)
O1—P2—O3104.75 (7)O1ii—Li—O1ix180.0
B—O3—P2124.48 (13)O2—Li—O5ii91.82 (5)
P2—O2—Cu1122.61 (8)O2v—Li—O5ii88.18 (5)
P2—O2—Li129.39 (8)O1ii—Li—O5ii68.18 (5)
Cu1—O2—Li96.37 (6)O1ix—Li—O5ii111.82 (5)
P2—O1—Cu1vi106.24 (7)O2—Li—O5ix88.18 (5)
P2—O1—Livi95.01 (6)O2v—Li—O5ix91.82 (5)
Cu1vi—O1—Livi93.45 (6)O1ii—Li—O5ix111.82 (5)
P2—O1—Cu1vii123.34 (8)O1ix—Li—O5ix68.18 (5)
Cu1vi—O1—Cu1vii125.56 (6)O5ii—Li—O5ix180.0
Livi—O1—Cu1vii102.45 (5)

Symmetry codes: (i) x, −y+2, z+1/2; (ii) x, y+1, z; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+1, y, −z+3/2; (v) −x+1/2, −y+5/2, −z+1; (vi) x, y−1, z; (vii) −x+1/2, y−1/2, −z+3/2; (viii) x, −y+2, z−1/2; (ix) −x+1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O2i0.85 (1)2.37 (3)2.9535 (19)126 (3)
O4—H4···O5x0.85 (1)2.32 (2)3.036 (2)143 (3)

Symmetry codes: (i) x, −y+2, z+1/2; (x) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2104).

References

  • Boy, I. & Kniep, R. J. (2001). Z. Kristallogr. New Cryst. Struct.216, 9–10.
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem.633, 1517–1540.
  • Kniep, R., Will, H. G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed.36, 1013–1014.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, T., Sun, J.-L., Li, G.-B., Eriksson, L., Zou, X.-D., Liao, F.-H. & Ling, J.-H. (2008). Chem. Eur. J 14, 7212–7217. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography