PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 May 1; 65(Pt 5): i38–i39.
Published online 2009 April 30. doi:  10.1107/S1600536809015438
PMCID: PMC2977543

Potassium nickel(II) gallium phosphate hydrate, K[NiGa2(PO4)3(H2O)2]

Abstract

The title compound, potassium nickel(II) digallium tris­(phosphate) dihydrate, K[NiGa2(PO4)3(H2O)2], was synthesized hydro­thermally. The structure is constructed from distorted trans-NiO4(H2O)2 octa­hedra linked through vertices and edges to GaO5 trigonal bipyramids and PO4 tetra­hedra, forming a three-dimensional framework of formula [NiGa2(PO4)3(H2O)2]. The K, Ni and one P atom lie on special positions (Wyckoff position 4e, site symmetry 2). There are two sets of channels within the framework, one running parallel to the [10An external file that holds a picture, illustration, etc.
Object name is e-65-00i38-efi13.jpg] direction and the other parallel to [001]. These inter­sect, forming a three-dimensional pore network in which the water mol­ecules coordinated to the Ni atoms and the K+ ions required to charge balance the framework reside. The K+ ions lie in a highly distorted environment surrounded by ten O atoms, six of which are closer than 3.1Å. The coordinated water mol­ecules are within hydrogen-bonding distance to O atoms of bridging Ga—O—P groups.

Related literature

For reviews of open-framework phosphate materials, see: Cheetham et al. (1999 [triangle]); Harrison (2002 [triangle]); Maspoch et al. (2007 [triangle]). For background to heterometal-substituted gallophosphates, MGaPOs, see: Baerlocher et al. (2001 [triangle]); Lin & Wang (2005 [triangle]). For related octa­hedral-trigonal bipyramidal silicate structures, see: Rocha & Lin (2005 [triangle]). For ammonium gallophosphates isostructural to the title compound, see: Chippindale et al. (1996 [triangle], 1998 [triangle]); Bieniok et al. (2008 [triangle]). For the aluminium analogue, K[NiAl2(PO4)3(H2O)2], see: Meyer & Haushalter (1994 [triangle]). The same structure type occurs in Cs[Fe3(PO4)3(H2O)2] (Lii & Huang, 1995 [triangle]) and NH4[CoAl2(PO4)3(H2O)2] (Panz et al., 1998 [triangle]) and is related to that of (NH4)3Ga2(PO4)3 (Lesage et al., 2004 [triangle]). For bond-valence sums, see: Brese & O’Keeffe (1991 [triangle]); For the weighting scheme, see: Prince (1982 [triangle]); Watkin (1994 [triangle]).

Experimental

Crystal data

  • K[NiGa2(PO4)3(H2O)2]
  • M r = 558.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i38-efi19.jpg
  • a = 13.2095 (13) Å
  • b = 10.1733 (9) Å
  • c = 8.8130 (9) Å
  • β = 107.680 (10)°
  • V = 1128.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.27 mm−1
  • T = 150 K
  • 0.09 × 0.08 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.54, T max = 0.65
  • 3597 measured reflections
  • 1913 independent reflections
  • 1734 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.025
  • S = 1.04
  • 1667 reflections
  • 103 parameters
  • 3 restraints
  • Only H-atom coordinates refined
  • Δρmax = 0.84 e Å−3
  • Δρmin = −0.91 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015438/fi2077sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015438/fi2077Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the EPSRC for a grant in support of a single-crystal diffractometer.

supplementary crystallographic information

Comment

Although the majority of heterometal substituted gallophosphates, MeGaPOs, contain MO4 (M = Me or Ga) and PO4 units (Baerlocher et al., 2001), some are known in which the metal atoms have non-tetrahedral geometries. For example, NGP-1 (Lin & Wang, 2005), the only organically templated NiGaPO reported to date, contains Ni and Ga disordered over the same octahedral metal sites, together with GaO5 and PO4 units. K[NiGa2(PO4)3(H2O)2] is assembled from the same polyhedra as NGP-1 and is isostructural with a number of ammonium transition-metal gallophosphates, NH4[MeGa2(PO4)3(H2O)2] (Me = Mn (Chippindale et al., 1998), Fe, Ni (Bieniok et al., 2008), Co (Chippindale et al., 1996)) and has an aluminium analogue, K[NiAl2(PO4)3(H2O)2] (Meyer & Haushalter, 1994). The same structure type occurs in Cs[Fe3(PO4)3(H2O)2] (Lii & Huang, 1995) and NH4[CoAl2(PO4)3(H2O)2] (Panz et al., 1998) and is related to that of (NH4)3Ga2(PO4)3 (Lesage et al., 2004).

The two phosphorus atoms have tetrahedral geometry (P1, point symmetry C2v; P2,1). Unlike in NGP-1, the metal atoms are located in two distinct sites; Ga1 in a GaO5 trigonal bipyramid (1) and Ni1 in an NiO4(H2O)2 distorted octahedron (C2v), in which the terminal water molecules, H2O4, lie trans to each other (Fig. 1). Two of the other oxygen atoms in the NiO6 unit, O2 and O2i, are two coordinate whilst O3 and O3i are three coordinate. As expected, the M—O3 (M = Ni, Ga) and P1—O3 bond lengths are the longest M—O and P–O bond lengths observed in the structure. Bond-valence sums (Brese & OKeeffe, 1991) for P1, P2, Ga1 and Ni1 are 4.80, 4.81, 3.22 and 1.93. respectively, which together with the yellow colour of the crystals, confirm the presence of Ni2+ in the structure.

The GaO5, NiO6 and PO4 units link together through edge- and vertex-sharing arrangements to give a three-dimensional framework of composition [NiGa2(PO4)3(H2O)2]-. A set of approximately circular channels, running parallel to the [101] direction, contain the water molecules and potassium ions (Fig. 2). A second set of channels, elliptical in shape, run parallel to the c axis (Fig. 3) and intersect with the first set to generate a three-dimensional pore network.

The potassium atom lies in a very distorted coordination environment with six near oxygen atoms (K1···O in range 2.865 (1) to 3.072 (1) Å) with two additional O atoms at 3.397 (1) and two at 3.456 (1) Å). H2O4 is also involved in hydrogen bonding to Ga—O—P bridging oxygen atoms.

Experimental

The title compound was prepared hydrothermally from a gel of composition Ga2O3: NiCl2.6H2O:10H3PO4:156H2O:0.1Si(OEt)4:5KH2PO4 which was heated at 433 K for 7 d in a Teflon-lined stainless steel autoclave. The solid product was collected by filtration, washed with deionized water and dried in air. The product consisted of large yellow faceted blocks of the title compound, which could be easily separated from unidentified white powder.

Refinement

Prior to refinement, reflections with I<3σ(I) were omitted. The H atoms of the water molecule, H2O4, were located in a difference Fourier map. Their fractional coordinates were refined subject to bond length and angle restraints [O4–H = 0.85 (1) Å, H–O4–H = 109 (5) °] with isotropic displacement parameters fixed at 0.05 Å2.

Figures

Fig. 1.
Local coordination of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. [Symmetry codes: (i) -x, y, -z + 1/2; (ii) x, -y, z + 1/2; (iii) -x, -y, -z; (iv) -x + 1/2, y + ...
Fig. 2.
View of the main channels running parallel to the [1 0 1] direction shown as (a) ball and stick and (b) polyhedral representation. The cross pore distance O1···O5x is 7.251 (1) Å. The colour of each polyhedron corresponds ...
Fig. 3.
View along the c axis as (a) ball and stick and (b) polyhedral representation showing the elliptical channels bounded by eight membered rings. The shortest cross channel distances are 4.092 (2) and 4.360 (1) Å for O2···O2xi ...

Crystal data

K[NiGa2(PO4)3(H2O)2]F(000) = 1080
Mr = 558.17Dx = 3.286 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3597 reflections
a = 13.2095 (13) Åθ = 3–32.4°
b = 10.1733 (9) ŵ = 7.27 mm1
c = 8.8130 (9) ÅT = 150 K
β = 107.68 (1)°Block, yellow
V = 1128.4 (2) Å30.09 × 0.08 × 0.06 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer1734 reflections with I > 2σ(I)
graphiteRint = 0.018
ω/2θ scansθmax = 32.6°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)h = −15→19
Tmin = 0.54, Tmax = 0.65k = −15→15
3597 measured reflectionsl = −13→11
1913 independent reflections

Refinement

Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022Only H-atom coordinates refined
wR(F2) = 0.025 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 18.9 -12.3 16.6
S = 1.04(Δ/σ)max = 0.001
1667 reflectionsΔρmax = 0.84 e Å3
103 parametersΔρmin = −0.91 e Å3
3 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ga10.172478 (11)0.075592 (15)0.069169 (16)0.0036
Ni10.00000.27385 (3)0.25000.0053
K10.00000.63513 (6)0.25000.0264
P10.00000.00118 (5)0.25000.0036
P20.20870 (3)0.37358 (4)0.17941 (4)0.0043
O10.05847 (8)0.09109 (11)−0.11504 (12)0.0063
O20.09754 (9)0.39793 (11)0.18796 (14)0.0082
O30.07314 (9)0.09888 (11)0.19895 (13)0.0064
O40.09834 (9)0.29514 (12)0.48612 (14)0.0111
O50.20652 (8)−0.08860 (10)0.16197 (12)0.0061
O60.27707 (8)0.04382 (11)−0.04158 (13)0.0070
O70.23679 (8)0.22862 (11)0.15963 (13)0.0070
H10.135 (3)0.236 (3)0.547 (4)0.0500*
H20.136 (3)0.361 (3)0.481 (5)0.0500*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ga10.00279 (8)0.00233 (9)0.00525 (8)−0.00019 (4)0.00068 (5)0.00009 (4)
Ni10.00413 (11)0.00400 (12)0.00818 (12)0.00000.00228 (8)0.0000
K10.0287 (3)0.0109 (2)0.0465 (4)0.00000.0215 (3)0.0000
P10.00246 (18)0.0030 (2)0.00514 (19)0.00000.00089 (14)0.0000
P20.00345 (15)0.00312 (15)0.00631 (14)−0.00077 (10)0.00159 (11)−0.00031 (10)
O10.0048 (4)0.0058 (4)0.0066 (4)0.0003 (3)−0.0007 (3)−0.0014 (3)
O20.0042 (4)0.0074 (4)0.0140 (4)0.0001 (3)0.0042 (3)0.0016 (4)
O30.0058 (4)0.0043 (4)0.0108 (4)−0.0002 (3)0.0051 (3)0.0010 (3)
O40.0106 (5)0.0083 (4)0.0115 (5)−0.0003 (4)−0.0009 (4)0.0023 (4)
O50.0063 (4)0.0039 (4)0.0072 (4)0.0008 (3)0.0006 (3)0.0018 (3)
O60.0071 (4)0.0062 (4)0.0090 (4)0.0011 (3)0.0042 (3)0.0013 (3)
O70.0068 (4)0.0038 (4)0.0104 (4)−0.0017 (3)0.0029 (3)−0.0030 (3)

Geometric parameters (Å, °)

Ga1—O11.8556 (11)P1—O1ii1.5279 (11)
Ga1—O31.9994 (11)P1—O1iii1.5279 (11)
Ga1—O51.8541 (10)P1—O31.5452 (11)
Ga1—O61.9455 (11)P1—O3i1.5452 (11)
Ga1—O71.8357 (11)P2—O21.5135 (11)
Ni1—O21.9951 (11)P2—O5iv1.5510 (11)
Ni1—O2i1.9951 (11)P2—O6v1.5348 (12)
Ni1—O32.1374 (11)P2—O71.5434 (12)
Ni1—O3i2.1374 (11)O4—H10.850 (10)
Ni1—O42.1030 (12)O4—H20.848 (10)
Ni1—O4i2.1030 (12)
O1—Ga1—O389.49 (5)O4i—Ni1—O4168.18 (7)
O1—Ga1—O5119.09 (5)O1ii—P1—O1iii104.18 (9)
O1—Ga1—O694.97 (5)O1ii—P1—O3114.14 (6)
O1—Ga1—O7116.97 (5)O1iii—P1—O3112.42 (6)
O3—Ga1—O588.16 (5)O3i—P1—O1ii112.42 (6)
O3—Ga1—O6174.93 (4)O3i—P1—O1iii114.14 (6)
O3—Ga1—O787.06 (5)O3i—P1—O399.94 (8)
O5—Ga1—O687.57 (5)O2—P2—O7115.61 (6)
O5—Ga1—O7123.66 (5)O5iv—P2—O2111.12 (6)
O6—Ga1—O793.05 (5)O5iv—P2—O6v110.43 (6)
O2i—Ni1—O2101.49 (7)O5iv—P2—O7101.91 (6)
O2—Ni1—O395.65 (4)O6v—P2—O2107.68 (6)
O2i—Ni1—O3162.84 (5)O6v—P2—O7110.02 (6)
O2—Ni1—O487.12 (5)Ga1—O1—P1iii135.47 (7)
O2i—Ni1—O485.41 (5)Ga1—O3—Ni1129.51 (5)
O3i—Ni1—O2162.84 (5)Ga1—O3—P1131.86 (7)
O3i—Ni1—O2i95.65 (4)Ni1—O2—P2128.84 (7)
O3i—Ni1—O367.23 (6)Ni1—O3—P196.42 (5)
O3i—Ni1—O493.46 (4)Ni1—O4—H1128 (3)
O3i—Ni1—O4i96.38 (5)Ni1—O4—H2103 (3)
O4i—Ni1—O285.41 (5)H1—O4—H2111 (3)
O4i—Ni1—O2i87.12 (5)Ga1—O5—P2vi129.28 (7)
O3—Ni1—O496.38 (5)Ga1—O6—P2v125.62 (7)
O4i—Ni1—O393.46 (4)Ga1—O7—P2139.82 (7)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y, z+1/2; (iii) −x, −y, −z; (iv) −x+1/2, y+1/2, −z+1/2; (v) −x+1/2, −y+1/2, −z; (vi) −x+1/2, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H1···O5ii0.85 (1)1.90 (1)2.741 (2)172
O4—H2···O6iv0.85 (1)2.16 (2)2.976 (2)161

Symmetry codes: (ii) x, −y, z+1/2; (iv) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2077).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Baerlocher, C., Meier, W. M. & Olson, D. H. (2001). Atlas of Zeolite Structure Types (updates at http://www.iza-structure.org/), 5th ed. London: Elsevier.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Bieniok, A., Brendel, U., Lottermoser, W. & Amthauer, G. (2008). Z. Kristallogr 223, 186–194.
  • Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  • Cheetham, A. K., Ferey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed 38, 3268–3292. [PubMed]
  • Chippindale, A. M., Cowley, A. R. & Bond, A. D. (1998). Acta Cryst. C54, IUC9800061.
  • Chippindale, A. M., Cowley, A. R. & Walton, R. I. (1996). J. Mater. Chem.6, 611–614.
  • Harrison, W. T. A. (2002). Curr. Opin. Solid State Mater. Sci.6, 407–413.
  • Lesage, J., Guesdon, A., Raveau, B. & Petříček, V. (2004). J. Solid State Chem.177, 3581–3589.
  • Lii, K.-H. & Huang, C.-Y. (1995). J. Chem. Soc. Dalton Trans. pp. 571–574.
  • Lin, C.-H. & Wang, S. L. (2005). Inorg. Chem 44, 251–257. [PubMed]
  • Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev 6 770–818. [PubMed]
  • Meyer, L. M. & Haushalter, R. C. (1994). Chem. Mater.6, 349–350.
  • Oxford Diffraction, (2006). CrysAlis RED and CrysAlis Pro Oxford Diffraction Ltd, Abingdon, England.
  • Panz, C., Polborn, K. & Behrens, P. (1998). Inorg. Chim. Acta, 269, 73–82.
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  • Rocha, J. & Lin, Z. (2005). Reviews in Mineralogy and Geochemistry 57: Micro- and Mesoporous Mineral Phases, edited by G. Ferraris & S. Merlino, pp. 173–201. Mineralogical Society of America.
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography