PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m919.
Published online 2009 July 15. doi:  10.1107/S1600536809026890
PMCID: PMC2977500

catena-Poly[[[2-(2-pyrid­yl)-1H-benz­imidazole]cadmium(II)]-μ-benzene-1,4-dicarboxyl­ato]

Abstract

In the title compound, [Cd(C8H4O4)(C12H9N3)]n, each CdII ion is six-coordinated in a distorted octa­hedral geometry by four carboxyl­ate O atoms from two benzene-1,4-dicarboxyl­ate anions (L), and two N atoms from one 2-(2-pyrid­yl)benzimidazole ligand. The neighboring CdII ions are bridged by the L ligands, forming a zigzag polymeric chain structure. The chains are further extended into a three-dimensional supra­molecular structure through inter­molecular N—H(...)O hydrogen bonds.

Related literature

For metal-dicarboxyl­ate complexes with aromatic N-donor chelating ligands, see: Robl (1992 [triangle]); Wang et al. (2006 [triangle]); Liu et al. (2008 [triangle]); Xia et al. (2007 [triangle]). For the synthesis, see: Addison & Burke (1981 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m919-scheme1.jpg

Experimental

Crystal data

  • [Cd(C8H4O4)(C12H9N3)]
  • M r = 471.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m919-efi3.jpg
  • a = 7.378 (5) Å
  • b = 20.860 (5) Å
  • c = 11.546 (5) Å
  • β = 93.362 (5)°
  • V = 1773.9 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.26 mm−1
  • T = 293 K
  • 0.24 × 0.20 × 0.16 mm

Data collection

  • Oxford Diffraction Gemini R Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.750, T max = 0.815
  • 8112 measured reflections
  • 3624 independent reflections
  • 1967 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.052
  • S = 0.76
  • 3624 reflections
  • 257 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026890/ci2840sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026890/ci2840Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science Foundation of Suihua University (grant No. K081001) for supporting this work.

supplementary crystallographic information

Comment

In recent years, studies on metal-dicarboxylate complexes with aromatic N-donor chelating ligands have attracted special attention because of their interesting structural and chemical properties (Robl, 1992; Wang et al., 2006; Liu et al., 2008; Xia et al., 2007). Herein, we present a new cadmium-dicarboxylate complex (I), namely, [Cd(PyBM)L]n, where PyBM is 2-(2-pyridyl)benzimidazole and L is benzene-1,4-dicarboxylic acid.

Selected bond distances are listed in Table 1. Each CdII center is six-coordinated by two N atoms of the chelating PyBM ligand and four O atoms from two L ions. The neighboring CdII ions are bridged by L ligands to form a zigzag polymeric chain structure (Fig. 2).

In the crystal structure, the adjacent chains are linked via N—H···O hydrogen bonds (Table 2) resulting in the formation of a three-dimensional supramolecular structure.

Experimental

2-(2-Pyridyl)benzimidazole was synthesized according to the literature method of Addison et al., (1981). A solution of Cd(CH3COO)2.2H2O (0.133 g, 0.5 mmol), 2-(2-pyridyl)benzimidazole (0.097 g, 0.5 mmol), benzene-1,4-dicarboxylic acid (0.083 g, 0.5 mmol) in H2O (10 ml) and CH3OH (5 ml) was stirred under ambient conditions, then sealed in a Teflon-lined steel vessel, heated at 443 K for 3 d, and cooled to room temperature. The resulting product was recovered by filtration, washed with distilled water and dried in air (65% yield).

Refinement

The H atom bonded to atom N3 was located in a difference map and refined with the N-H distance restrained to 0.85 (2) Å. C-bound H atoms were positioned geometrically (C-H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The coordination environment of the CdII ion in the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (i) 1 + x, 1/2 -y, 1/2 + z.
Fig. 2.
Part of the polymeric chain in the title compound.

Crystal data

[Cd(C8H4O4)(C12H9N3)]F(000) = 936
Mr = 471.73Dx = 1.766 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3624 reflections
a = 7.378 (5) Åθ = 2.0–26.5°
b = 20.860 (5) ŵ = 1.26 mm1
c = 11.546 (5) ÅT = 293 K
β = 93.362 (5)°Block, colourless
V = 1773.9 (15) Å30.24 × 0.20 × 0.16 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra diffractometer3624 independent reflections
Radiation source: fine-focus sealed tube1967 reflections with I > 2σ(I)
graphiteRint = 0.052
Detector resolution: 10.0 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = −9→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006)k = −20→25
Tmin = 0.750, Tmax = 0.815l = −9→14
8112 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 0.76w = 1/[σ2(Fo2) + (0.0138P)2] where P = (Fo2 + 2Fc2)/3
3624 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.79275 (4)0.109528 (16)0.34633 (3)0.03417 (10)
C10.5456 (5)0.14696 (17)0.1841 (4)0.0286 (10)
C20.4090 (5)0.17967 (17)0.1042 (3)0.0256 (9)
C30.2232 (5)0.17395 (19)0.1229 (3)0.0330 (11)
H30.18500.14610.17950.040*
C40.0980 (5)0.20935 (18)0.0576 (3)0.0341 (10)
H4−0.02510.20410.06850.041*
C50.1527 (5)0.25280 (17)−0.0243 (4)0.0293 (10)
C60.3364 (5)0.25629 (17)−0.0456 (4)0.0316 (10)
H60.37420.2834−0.10340.038*
C70.4622 (5)0.22008 (18)0.0176 (3)0.0318 (10)
H70.58420.22280.00200.038*
C80.0192 (5)0.29813 (19)−0.0795 (3)0.0302 (10)
C90.7918 (6)−0.0301 (2)0.2117 (4)0.0487 (13)
H90.8198−0.00580.14770.058*
C100.7574 (6)−0.0939 (2)0.1950 (4)0.0581 (14)
H100.7656−0.11270.12250.070*
C110.7105 (6)−0.1293 (2)0.2886 (5)0.0556 (14)
H110.6836−0.17260.28000.067*
C120.7032 (5)−0.1004 (2)0.3951 (4)0.0451 (11)
H120.6712−0.12380.45930.054*
C130.7440 (5)−0.03626 (19)0.4051 (4)0.0327 (10)
C140.7435 (5)−0.00048 (19)0.5139 (4)0.0303 (10)
C150.7579 (5)0.0770 (2)0.6369 (4)0.0333 (11)
C160.7781 (5)0.1363 (2)0.6920 (4)0.0436 (12)
H160.79810.17370.65070.052*
C170.7668 (6)0.1367 (2)0.8101 (4)0.0506 (14)
H170.77890.17560.84930.061*
C180.7379 (6)0.0815 (2)0.8736 (4)0.0582 (14)
H180.73120.08420.95370.070*
C190.7192 (6)0.0225 (2)0.8197 (4)0.0490 (13)
H190.6998−0.01480.86130.059*
C200.7307 (5)0.02185 (19)0.7012 (4)0.0339 (11)
N10.7647 (4)0.06143 (15)0.5215 (3)0.0329 (8)
N20.7879 (4)−0.00038 (16)0.3145 (3)0.0378 (9)
N30.7210 (5)−0.02713 (18)0.6197 (3)0.0400 (10)
O10.7077 (4)0.14386 (12)0.1581 (3)0.0435 (7)
O20.4940 (3)0.12531 (12)0.2787 (2)0.0371 (8)
O30.0764 (3)0.34878 (12)−0.1266 (2)0.0354 (7)
O4−0.1483 (3)0.28802 (12)−0.0740 (2)0.0403 (8)
H1A0.701 (6)−0.0642 (12)0.642 (4)0.080 (18)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.03531 (15)0.03201 (15)0.03438 (19)−0.00389 (19)−0.00479 (12)0.0038 (2)
C10.035 (2)0.024 (2)0.026 (3)0.0038 (19)−0.002 (2)−0.0041 (19)
C20.031 (2)0.024 (2)0.022 (3)0.0032 (18)0.0023 (18)0.0007 (19)
C30.034 (2)0.036 (2)0.029 (3)−0.004 (2)0.004 (2)0.013 (2)
C40.028 (2)0.045 (3)0.029 (3)−0.001 (2)0.002 (2)0.005 (2)
C50.032 (2)0.025 (2)0.031 (3)0.0029 (19)−0.0011 (19)0.0009 (19)
C60.037 (2)0.032 (2)0.027 (3)−0.004 (2)0.006 (2)0.004 (2)
C70.027 (2)0.041 (3)0.028 (3)−0.004 (2)0.005 (2)−0.003 (2)
C80.036 (3)0.033 (2)0.021 (3)0.000 (2)−0.001 (2)−0.008 (2)
C90.057 (3)0.044 (3)0.045 (4)0.005 (2)0.002 (2)−0.004 (3)
C100.072 (3)0.054 (4)0.047 (4)0.015 (3)−0.004 (3)−0.021 (3)
C110.062 (3)0.036 (3)0.067 (4)0.007 (2)−0.013 (3)−0.020 (3)
C120.052 (3)0.032 (3)0.050 (3)0.005 (2)−0.005 (2)0.001 (2)
C130.034 (2)0.030 (3)0.033 (3)0.011 (2)−0.005 (2)−0.002 (2)
C140.026 (2)0.030 (3)0.034 (3)0.0012 (19)−0.003 (2)0.005 (2)
C150.026 (2)0.039 (3)0.036 (3)0.003 (2)0.005 (2)−0.003 (2)
C160.050 (3)0.038 (3)0.044 (4)−0.003 (2)0.008 (2)−0.008 (2)
C170.052 (3)0.058 (3)0.043 (4)−0.002 (3)0.010 (3)−0.020 (3)
C180.070 (4)0.071 (4)0.034 (4)−0.004 (3)0.007 (3)−0.013 (3)
C190.055 (3)0.060 (3)0.032 (3)−0.005 (2)0.007 (2)0.008 (3)
C200.031 (2)0.037 (3)0.034 (3)0.003 (2)0.002 (2)−0.003 (2)
N10.041 (2)0.028 (2)0.029 (3)−0.0010 (17)0.0010 (17)−0.0043 (17)
N20.046 (2)0.041 (2)0.025 (3)−0.0010 (17)−0.0062 (19)−0.0089 (19)
N30.047 (2)0.039 (2)0.033 (3)−0.003 (2)0.001 (2)0.004 (2)
O10.0297 (14)0.0664 (18)0.0346 (19)0.0045 (16)0.0043 (13)0.0090 (17)
O20.0307 (14)0.046 (2)0.035 (2)−0.0055 (13)0.0037 (14)0.0123 (15)
O30.0336 (16)0.0359 (17)0.037 (2)0.0027 (13)0.0036 (14)0.0105 (14)
O40.0291 (16)0.0356 (17)0.056 (2)−0.0032 (14)−0.0015 (15)0.0059 (15)

Geometric parameters (Å, °)

Cd1—O3i2.271 (3)C9—H90.9300
Cd1—N12.278 (3)C10—C111.369 (6)
Cd1—O22.318 (3)C10—H100.9300
Cd1—N22.322 (3)C11—C121.374 (6)
Cd1—O12.338 (3)C11—H110.9300
Cd1—O4i2.357 (3)C12—C131.375 (5)
Cd1—C12.654 (4)C12—H120.9300
Cd1—C8i2.658 (4)C13—N21.341 (5)
C1—O11.252 (4)C13—C141.461 (6)
C1—O21.261 (4)C14—N11.303 (4)
C1—C21.491 (5)C14—N31.361 (5)
C2—C71.382 (5)C15—N11.375 (5)
C2—C31.405 (5)C15—C201.389 (5)
C3—C41.373 (5)C15—C161.396 (5)
C3—H30.9300C16—C171.372 (6)
C4—C51.387 (5)C16—H160.9300
C4—H40.9300C17—C181.389 (6)
C5—C61.394 (5)C17—H170.9300
C5—C81.482 (5)C18—C191.383 (6)
C6—C71.373 (5)C18—H180.9300
C6—H60.9300C19—C201.376 (6)
C7—H70.9300C19—H190.9300
C8—O41.259 (4)C20—N31.387 (5)
C8—O31.272 (4)N3—H1A0.829 (19)
C8—Cd1ii2.658 (4)O3—Cd1ii2.271 (3)
C9—N21.342 (5)O4—Cd1ii2.357 (3)
C9—C101.366 (5)
O3i—Cd1—N1100.24 (11)O3—C8—C5119.0 (3)
O3i—Cd1—O2147.38 (10)O4—C8—Cd1ii62.44 (19)
N1—Cd1—O2103.14 (10)O3—C8—Cd1ii58.55 (19)
O3i—Cd1—N2113.93 (11)C5—C8—Cd1ii171.9 (3)
N1—Cd1—N272.79 (12)N2—C9—C10124.2 (5)
O2—Cd1—N294.67 (10)N2—C9—H9117.9
O3i—Cd1—O1101.85 (10)C10—C9—H9117.9
N1—Cd1—O1157.89 (10)C9—C10—C11117.9 (5)
O2—Cd1—O156.34 (9)C9—C10—H10121.1
N2—Cd1—O198.89 (11)C11—C10—H10121.1
O3i—Cd1—O4i56.74 (9)C10—C11—C12119.7 (4)
N1—Cd1—O4i94.44 (11)C10—C11—H11120.2
O2—Cd1—O4i98.78 (9)C12—C11—H11120.2
N2—Cd1—O4i163.31 (11)C11—C12—C13118.8 (4)
O1—Cd1—O4i96.78 (10)C11—C12—H12120.6
O3i—Cd1—C1125.02 (11)C13—C12—H12120.6
N1—Cd1—C1131.42 (12)N2—C13—C12122.6 (4)
O2—Cd1—C128.37 (9)N2—C13—C14113.5 (4)
N2—Cd1—C1100.09 (11)C12—C13—C14123.9 (4)
O1—Cd1—C128.15 (10)N1—C14—N3111.4 (4)
O4i—Cd1—C196.43 (10)N1—C14—C13123.9 (4)
O3i—Cd1—C8i28.54 (10)N3—C14—C13124.7 (4)
N1—Cd1—C8i96.98 (11)N1—C15—C20109.7 (4)
O2—Cd1—C8i124.94 (11)N1—C15—C16129.9 (4)
N2—Cd1—C8i140.36 (12)C20—C15—C16120.4 (4)
O1—Cd1—C8i101.92 (10)C17—C16—C15116.6 (4)
O4i—Cd1—C8i28.26 (9)C17—C16—H16121.7
C1—Cd1—C8i114.01 (12)C15—C16—H16121.7
O1—C1—O2122.0 (4)C16—C17—C18122.7 (4)
O1—C1—C2119.7 (4)C16—C17—H17118.7
O2—C1—C2118.2 (3)C18—C17—H17118.7
O1—C1—Cd161.8 (2)C19—C18—C17121.0 (5)
O2—C1—Cd160.87 (19)C19—C18—H18119.5
C2—C1—Cd1169.4 (3)C17—C18—H18119.5
C7—C2—C3118.9 (4)C20—C19—C18116.5 (4)
C7—C2—C1121.1 (3)C20—C19—H19121.7
C3—C2—C1119.8 (3)C18—C19—H19121.7
C4—C3—C2120.1 (3)C19—C20—N3132.7 (4)
C4—C3—H3120.0C19—C20—C15122.8 (4)
C2—C3—H3120.0N3—C20—C15104.5 (4)
C3—C4—C5120.8 (3)C14—N1—C15106.7 (3)
C3—C4—H4119.6C14—N1—Cd1113.2 (3)
C5—C4—H4119.6C15—N1—Cd1140.1 (3)
C4—C5—C6118.7 (4)C13—N2—C9116.8 (4)
C4—C5—C8119.8 (4)C13—N2—Cd1115.5 (3)
C6—C5—C8121.3 (4)C9—N2—Cd1126.6 (3)
C7—C6—C5120.7 (4)C14—N3—C20107.7 (4)
C7—C6—H6119.6C14—N3—H1A134 (4)
C5—C6—H6119.6C20—N3—H1A119 (4)
C6—C7—C2120.6 (4)C1—O1—Cd190.1 (2)
C6—C7—H7119.7C1—O2—Cd190.8 (2)
C2—C7—H7119.7C8—O3—Cd1ii92.9 (2)
O4—C8—O3120.8 (4)C8—O4—Cd1ii89.3 (2)
O4—C8—C5120.1 (4)
O3i—Cd1—C1—O138.9 (3)C20—C15—N1—C14−0.2 (4)
N1—Cd1—C1—O1−165.9 (2)C16—C15—N1—C14178.1 (4)
O2—Cd1—C1—O1−171.1 (4)C20—C15—N1—Cd1177.6 (3)
N2—Cd1—C1—O1−90.0 (2)C16—C15—N1—Cd1−4.1 (7)
O4i—Cd1—C1—O192.4 (2)O3i—Cd1—N1—C14−118.0 (3)
C8i—Cd1—C1—O169.3 (2)O2—Cd1—N1—C1484.9 (3)
O3i—Cd1—C1—O2−150.07 (19)N2—Cd1—N1—C14−6.0 (3)
N1—Cd1—C1—O25.1 (3)O1—Cd1—N1—C1464.6 (4)
N2—Cd1—C1—O281.0 (2)O4i—Cd1—N1—C14−175.0 (3)
O1—Cd1—C1—O2171.1 (4)C1—Cd1—N1—C1482.4 (3)
O4i—Cd1—C1—O2−96.6 (2)C8i—Cd1—N1—C14−146.7 (3)
C8i—Cd1—C1—O2−119.6 (2)O3i—Cd1—N1—C1564.3 (4)
O3i—Cd1—C1—C2−62.2 (16)O2—Cd1—N1—C15−92.8 (4)
N1—Cd1—C1—C293.0 (16)N2—Cd1—N1—C15176.3 (4)
O2—Cd1—C1—C287.9 (16)O1—Cd1—N1—C15−113.1 (4)
N2—Cd1—C1—C2168.9 (16)O4i—Cd1—N1—C157.3 (4)
O1—Cd1—C1—C2−101.1 (16)C1—Cd1—N1—C15−95.3 (4)
O4i—Cd1—C1—C2−8.7 (16)C8i—Cd1—N1—C1535.6 (4)
C8i—Cd1—C1—C2−31.8 (16)C12—C13—N2—C9−0.5 (6)
O1—C1—C2—C7−16.2 (6)C14—C13—N2—C9179.7 (3)
O2—C1—C2—C7161.1 (4)C12—C13—N2—Cd1168.0 (3)
Cd1—C1—C2—C779.0 (17)C14—C13—N2—Cd1−11.8 (4)
O1—C1—C2—C3169.3 (4)C10—C9—N2—C13−1.2 (6)
O2—C1—C2—C3−13.4 (5)C10—C9—N2—Cd1−168.2 (3)
Cd1—C1—C2—C3−95.5 (16)O3i—Cd1—N2—C13103.7 (3)
C7—C2—C3—C4−1.6 (6)N1—Cd1—N2—C139.9 (3)
C1—C2—C3—C4173.0 (4)O2—Cd1—N2—C13−92.5 (3)
C2—C3—C4—C5−2.4 (6)O1—Cd1—N2—C13−149.1 (3)
C3—C4—C5—C65.0 (6)O4i—Cd1—N2—C1351.2 (5)
C3—C4—C5—C8−169.8 (4)C1—Cd1—N2—C13−120.6 (3)
C4—C5—C6—C7−3.6 (6)C8i—Cd1—N2—C1389.8 (3)
C8—C5—C6—C7171.1 (4)O3i—Cd1—N2—C9−89.2 (3)
C5—C6—C7—C2−0.4 (6)N1—Cd1—N2—C9177.0 (4)
C3—C2—C7—C63.0 (6)O2—Cd1—N2—C974.7 (3)
C1—C2—C7—C6−171.6 (3)O1—Cd1—N2—C918.1 (4)
C4—C5—C8—O4−16.7 (6)O4i—Cd1—N2—C9−141.6 (4)
C6—C5—C8—O4168.7 (4)C1—Cd1—N2—C946.6 (4)
C4—C5—C8—O3159.5 (4)C8i—Cd1—N2—C9−103.0 (4)
C6—C5—C8—O3−15.1 (6)N1—C14—N3—C20−0.7 (5)
N2—C9—C10—C112.1 (7)C13—C14—N3—C20179.3 (4)
C9—C10—C11—C12−1.3 (7)C19—C20—N3—C14−179.2 (4)
C10—C11—C12—C13−0.2 (6)C15—C20—N3—C140.5 (4)
C11—C12—C13—N21.1 (6)O2—C1—O1—Cd1−9.2 (4)
C11—C12—C13—C14−179.1 (4)C2—C1—O1—Cd1168.0 (3)
N2—C13—C14—N16.8 (6)O3i—Cd1—O1—C1−148.3 (2)
C12—C13—C14—N1−173.0 (4)N1—Cd1—O1—C129.0 (4)
N2—C13—C14—N3−173.2 (4)O2—Cd1—O1—C15.1 (2)
C12—C13—C14—N37.0 (6)N2—Cd1—O1—C194.8 (2)
N1—C15—C16—C17−179.1 (4)O4i—Cd1—O1—C1−91.0 (2)
C20—C15—C16—C17−0.9 (6)C8i—Cd1—O1—C1−119.1 (2)
C15—C16—C17—C180.4 (7)O1—C1—O2—Cd19.3 (4)
C16—C17—C18—C190.1 (7)C2—C1—O2—Cd1−167.9 (3)
C17—C18—C19—C200.0 (7)O3i—Cd1—O2—C149.3 (3)
C18—C19—C20—N3179.1 (4)N1—Cd1—O2—C1−176.0 (2)
C18—C19—C20—C15−0.6 (6)N2—Cd1—O2—C1−102.6 (2)
N1—C15—C20—C19179.6 (4)O1—Cd1—O2—C1−5.1 (2)
C16—C15—C20—C191.1 (6)O4i—Cd1—O2—C187.3 (2)
N1—C15—C20—N3−0.2 (4)C8i—Cd1—O2—C175.6 (3)
C16—C15—C20—N3−178.7 (4)O4—C8—O3—Cd1ii5.2 (4)
N3—C14—N1—C150.6 (4)C5—C8—O3—Cd1ii−171.0 (3)
C13—C14—N1—C15−179.4 (3)O3—C8—O4—Cd1ii−5.0 (4)
N3—C14—N1—Cd1−177.9 (2)C5—C8—O4—Cd1ii171.2 (3)
C13—C14—N1—Cd12.1 (5)

Symmetry codes: (i) x+1, −y+1/2, z+1/2; (ii) x−1, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H1A···O2iii0.83 (2)2.17 (3)2.882 (5)144 (4)
N3—H1A···O3iv0.83 (2)2.46 (4)2.988 (5)123 (4)

Symmetry codes: (iii) −x+1, −y, −z+1; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2840).

References

  • Addison, A. W. & Burke, P. J. (1981). J. Heterocycl. Chem.18, 803–805.
  • Liu, G.-X., Huang, R.-Y., Xu, H., Kong, X.-J., Huang, L.-F., Zhu, K. & Ren, X.-M. (2008). Polyhedron, 27, 2327–2336.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Robl, C. (1992). Mater. Res. Bull.27, 99–107.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-L., Qin, C., Wang, E.-B. & Xu, L. (2006). Cryst. Growth Des.6, 2061–2065.
  • Xia, C.-K., Wu, W., Chen, Q.-Y. & Xie, J.-M. (2007). Acta Cryst. E63, m2726.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography