PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1772.
Published online 2009 July 4. doi:  10.1107/S1600536809025033
PMCID: PMC2977495

1,2-Bis[1-(3-methyl­sulfanyl-1,2,4-triazin-5-yl)ethyl­idene]diazane

Abstract

The mol­ecule of the title compound, C12H14N8S2, has an N—N gauche conformation. The triazine rings are nearly coplanar with respect to the imide bonds [C—C—C—N torsion angles = −15.3 (3) and −15.8 (3)°] and they are twisted by 77.88 (7)°. The overall conformation of the mol­ecule is stabilized by intra­molecular C—H(...)N hydrogen bonding. The mol­ecular packing is influenced by π–π inter­actions of the triazine systems with a shortest centroid–centroid separation of 3.5242 (12) Å.

Related literature

For the biological activity of hydrazones, see: Rollas et al. (2002 [triangle]); Terzioglu & Gürsoy (2003 [triangle]); Bedia et al. (2006 [triangle]). For the synthesis, see: Karczmarzyk et al. (2000 [triangle]); Rykowski et al. (2000 [triangle]); Mojzych & Rykowski (2003 [triangle]). For related structures, see: Lewis et al. (2000 [triangle]); Sauro & Workentin (2001 [triangle]); Tai et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1772-scheme1.jpg

Experimental

Crystal data

  • C12H14N8S2
  • M r = 334.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1772-efi1.jpg
  • a = 14.4962 (4) Å
  • b = 7.0814 (2) Å
  • c = 15.6619 (5) Å
  • β = 107.465 (2)°
  • V = 1533.63 (8) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 3.24 mm−1
  • T = 293 K
  • 0.32 × 0.22 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.474, T max = 0.753
  • 5750 measured reflections
  • 2635 independent reflections
  • 2200 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.117
  • S = 1.03
  • 2635 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025033/kp2223sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025033/kp2223Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydrazones have been found to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Rollas et al., 2002; Terzioglu & Gürsoy, 2003; Bedia et al., 2006). Recently, we reported several aryl hydrazones of 5-acyl-1,2,4-triazine as important building blocks for the synthesis of N-1 substituted pyrazolo[4,3-e][1,2,4]triazines (Karczmarzyk et al., 2000; Rykowski et al., 2000). In continuation of work in this area we report herein the crystal structure of the title compound as intermediate for the construction of N-1 unsubstituted pyrazolo[4,3-e][1,2,4]triazines (Mojzych & Rykowski, 2003) and as a ligand for the synthesis of novel organometallic compounds with expected biological activity and other material applications (Sauro & Workentin, 2001).

In the title molecule, the C—N imide bonds of 1.283 (3) and 1.279 (3) Å and N—N hydrazine bond of 1.370 (2) Å are very similar to those reported for other related structures (Lewis et al., 2000; Tai et al., 2008). The molecule of (I) has an N—N gauche conformation with C7—N8—N9—C10 torsion angle of 114.8 (2)°. The triazine rings are nearly coplanar with the respective imide bonds [C6—C5—C7—N8 = -15.3 (3)° and C16—-C15—C10—N9 = -15.8 (3)°] and they are twisted by 77.88 (7)° with respect to each other. This conformation is stabilized by the intramolecular C19—H193···N4 and C20—H202···N8 hydrogen bonds (Table 1). The methylsulfanyl groups are in different conformations in respect to the mother triazine rings with the torsion angles N4—C3—S17—C18 and N14—C13—S21—C22 of 179.03 (15) and 7.0 (2)°, respectively. Significant π-π interactions are observed in the packing (Spek, 2009). The triazine N1···C6 rings form molecular stacks in the [010] direction with centroid-to-centroid separations of 3.5242 (12) (1 - x, -y, 1 - z) and 3.6473 (12) Å (1 - x, 1 - y, 1 - z) (Fig. 2) and slippages of 0.898 and 1.615 Å, respectively.

Experimental

The synthesis of compound (I) and its analytical data (IR, 1H NMR) were described by Mojzych & Rykowski (2003). Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of an ethanol solution.

Refinement

All H atoms were located in a difference Fourier map and treated as riding on their C atoms [C—H distances of 0.93 Å (aromatic) and 0.96 Å (CH3)] with Uiso(H) = 1.5Ueq(C). The completeness of the reflection count on 0.94 level instead of expected 1.0 is caused by the poor diffraction due to unfavourable shape of the crystals of (I) (thin yellow plates).

Figures

Fig. 1.
The molecular structure of (I) with atom labels and the 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
A view of part of the crystal structure of (I) along (a) [100] and (b) [010], showing the formation of a column of stacked triazine rings.

Crystal data

C12H14N8S2F(000) = 696
Mr = 334.43Dx = 1.448 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1791 reflections
a = 14.4962 (4) Åθ = 5.8–66.9°
b = 7.0814 (2) ŵ = 3.24 mm1
c = 15.6619 (5) ÅT = 293 K
β = 107.465 (2)°Plate, yellow
V = 1533.63 (8) Å30.32 × 0.22 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer2635 independent reflections
Radiation source: fine-focus sealed tube2200 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 67.7°, θmin = 5.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −17→17
Tmin = 0.474, Tmax = 0.753k = −8→2
5750 measured reflectionsl = −18→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.117H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0575P)2 + 0.4463P] where P = (Fo2 + 2Fc2)/3
2635 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S170.29719 (4)0.25053 (8)0.43807 (4)0.0484 (2)
S210.94963 (5)0.20147 (9)0.04349 (4)0.0524 (2)
N10.56957 (14)0.2978 (3)0.57615 (13)0.0434 (4)
N20.47200 (14)0.3040 (3)0.55353 (12)0.0416 (4)
N40.46056 (13)0.1897 (2)0.40671 (11)0.0369 (4)
N80.69264 (14)0.1583 (3)0.38213 (12)0.0430 (4)
N90.74256 (14)0.0796 (3)0.32936 (13)0.0437 (5)
N110.92948 (16)−0.1765 (3)0.21425 (15)0.0530 (5)
N120.95071 (15)−0.0836 (3)0.14810 (14)0.0513 (5)
N140.86038 (13)0.1842 (2)0.17013 (12)0.0391 (4)
C30.42339 (16)0.2505 (3)0.47130 (15)0.0365 (5)
C50.55527 (16)0.1885 (3)0.42894 (14)0.0346 (5)
C60.61047 (17)0.2431 (3)0.51602 (15)0.0384 (5)
H610.67760.24030.53120.058*
C70.60199 (16)0.1214 (3)0.36205 (14)0.0373 (5)
C100.77872 (16)0.1880 (3)0.28245 (14)0.0399 (5)
C130.91659 (16)0.0920 (3)0.13019 (15)0.0410 (5)
C150.83999 (15)0.0913 (3)0.23536 (14)0.0374 (5)
C160.87630 (17)−0.0913 (3)0.25750 (16)0.0476 (6)
H1610.8624−0.15440.30420.071*
C180.27045 (19)0.3325 (3)0.53668 (18)0.0524 (6)
H1810.29210.24080.58360.079*
H1820.20190.35040.52350.079*
H1830.30300.45020.55570.079*
C190.54418 (18)0.0180 (3)0.28090 (15)0.0470 (6)
H1910.5800−0.08970.27120.071*
H1920.53090.10020.22990.071*
H1930.4844−0.02320.28920.071*
C200.7638 (2)0.3954 (3)0.27192 (19)0.0583 (7)
H2010.82220.45410.26810.087*
H2020.74760.44510.32260.087*
H2030.71220.42110.21830.087*
C220.9029 (2)0.4349 (4)0.04713 (18)0.0561 (6)
H2210.83440.42840.03770.084*
H2220.91560.51090.00110.084*
H2230.93370.49040.10450.084*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S170.0406 (3)0.0580 (4)0.0483 (4)0.0010 (3)0.0158 (3)−0.0040 (3)
S210.0571 (4)0.0614 (4)0.0505 (4)−0.0013 (3)0.0341 (3)−0.0052 (3)
N10.0458 (11)0.0510 (10)0.0343 (10)−0.0001 (9)0.0135 (8)−0.0036 (8)
N20.0461 (11)0.0460 (10)0.0351 (10)0.0023 (8)0.0157 (8)−0.0016 (8)
N40.0431 (10)0.0387 (9)0.0315 (9)0.0004 (8)0.0151 (8)0.0010 (7)
N80.0475 (11)0.0490 (10)0.0386 (10)−0.0007 (9)0.0224 (9)−0.0009 (8)
N90.0470 (11)0.0506 (10)0.0401 (10)0.0022 (9)0.0232 (9)−0.0007 (8)
N110.0533 (12)0.0532 (11)0.0548 (12)0.0129 (10)0.0196 (10)0.0027 (10)
N120.0525 (12)0.0544 (11)0.0522 (12)0.0094 (9)0.0237 (10)−0.0023 (9)
N140.0382 (10)0.0453 (10)0.0372 (10)−0.0016 (8)0.0165 (8)−0.0044 (8)
C30.0428 (12)0.0319 (10)0.0381 (12)0.0010 (9)0.0172 (10)0.0033 (8)
C50.0435 (12)0.0299 (9)0.0340 (11)−0.0010 (9)0.0169 (9)0.0039 (8)
C60.0389 (12)0.0422 (11)0.0357 (11)−0.0008 (9)0.0139 (9)−0.0008 (9)
C70.0493 (13)0.0349 (10)0.0320 (11)0.0016 (9)0.0188 (9)0.0052 (8)
C100.0391 (12)0.0493 (12)0.0337 (11)0.0012 (9)0.0143 (9)−0.0020 (9)
C130.0375 (12)0.0494 (12)0.0392 (12)−0.0022 (10)0.0161 (9)−0.0091 (9)
C150.0343 (11)0.0458 (11)0.0323 (11)−0.0018 (9)0.0105 (9)−0.0030 (9)
C160.0470 (14)0.0528 (13)0.0440 (13)0.0081 (10)0.0154 (11)0.0057 (10)
C180.0534 (15)0.0535 (13)0.0598 (16)0.0080 (11)0.0313 (13)0.0023 (12)
C190.0565 (15)0.0510 (13)0.0373 (12)−0.0026 (11)0.0198 (11)−0.0064 (10)
C200.0782 (19)0.0466 (13)0.0662 (17)0.0049 (13)0.0459 (15)−0.0011 (12)
C220.0527 (15)0.0635 (15)0.0593 (16)0.0019 (12)0.0280 (13)0.0089 (12)

Geometric parameters (Å, °)

S17—C31.745 (2)C6—H610.9300
S17—C181.798 (2)C7—C191.488 (3)
S21—C131.751 (2)C10—C151.481 (3)
S21—C221.794 (3)C10—C201.487 (3)
N1—C61.313 (3)C15—C161.400 (3)
N1—N21.352 (3)C16—H1610.9300
N2—C31.324 (3)C18—H1810.9600
N4—C51.311 (3)C18—H1820.9600
N4—C31.352 (3)C18—H1830.9600
N8—C71.283 (3)C19—H1910.9600
N8—N91.370 (2)C19—H1920.9600
N9—C101.279 (3)C19—H1930.9600
N11—C161.315 (3)C20—H2010.9600
N11—N121.339 (3)C20—H2020.9600
N12—C131.337 (3)C20—H2030.9600
N14—C151.321 (3)C22—H2210.9600
N14—C131.337 (3)C22—H2220.9600
C5—C61.412 (3)C22—H2230.9600
C5—C71.486 (3)
C3—S17—C18102.76 (12)N14—C15—C10117.49 (19)
C13—S21—C22100.93 (11)C16—C15—C10122.7 (2)
C6—N1—N2118.93 (19)N11—C16—C15122.1 (2)
C3—N2—N1117.08 (18)N11—C16—H161119.0
C5—N4—C3115.11 (18)C15—C16—H161119.0
C7—N8—N9117.19 (19)S17—C18—H181109.5
C10—N9—N8118.97 (18)S17—C18—H182109.5
C16—N11—N12118.7 (2)H181—C18—H182109.5
C13—N12—N11117.58 (19)S17—C18—H183109.5
C15—N14—C13115.32 (19)H181—C18—H183109.5
N2—C3—N4127.1 (2)H182—C18—H183109.5
N2—C3—S17119.62 (17)C7—C19—H191109.5
N4—C3—S17113.23 (17)C7—C19—H192109.5
N4—C5—C6119.94 (19)H191—C19—H192109.5
N4—C5—C7118.52 (19)C7—C19—H193109.5
C6—C5—C7121.5 (2)H191—C19—H193109.5
N1—C6—C5121.8 (2)H192—C19—H193109.5
N1—C6—H61119.1C10—C20—H201109.5
C5—C6—H61119.1C10—C20—H202109.5
N8—C7—C19125.6 (2)H201—C20—H202109.5
N8—C7—C5114.34 (19)C10—C20—H203109.5
C19—C7—C5120.0 (2)H201—C20—H203109.5
N9—C10—C15114.78 (19)H202—C20—H203109.5
N9—C10—C20125.9 (2)S21—C22—H221109.5
C15—C10—C20119.33 (19)S21—C22—H222109.5
N12—C13—N14126.5 (2)H221—C22—H222109.5
N12—C13—S21113.86 (16)S21—C22—H223109.5
N14—C13—S21119.58 (17)H221—C22—H223109.5
N14—C15—C16119.80 (19)H222—C22—H223109.5
C6—N1—N2—C31.1 (3)C6—C5—C7—C19163.73 (19)
C7—N8—N9—C10114.8 (2)N8—N9—C10—C15173.76 (19)
C16—N11—N12—C130.3 (3)N8—N9—C10—C20−6.5 (4)
N1—N2—C3—N40.1 (3)N11—N12—C13—N14−2.1 (4)
N1—N2—C3—S17178.80 (15)N11—N12—C13—S21179.33 (17)
C5—N4—C3—N2−1.6 (3)C15—N14—C13—N122.1 (3)
C5—N4—C3—S17179.68 (14)C15—N14—C13—S21−179.36 (16)
C18—S17—C3—N20.15 (19)C22—S21—C13—N12−174.30 (19)
C18—S17—C3—N4179.03 (15)C22—S21—C13—N147.0 (2)
C3—N4—C5—C61.8 (3)C13—N14—C15—C16−0.5 (3)
C3—N4—C5—C7179.32 (16)C13—N14—C15—C10179.41 (19)
N2—N1—C6—C5−0.8 (3)N9—C10—C15—N14164.3 (2)
N4—C5—C6—N1−0.7 (3)C20—C10—C15—N14−15.4 (3)
C7—C5—C6—N1−178.20 (18)N9—C10—C15—C16−15.8 (3)
N9—N8—C7—C19−7.1 (3)C20—C10—C15—C16164.4 (2)
N9—N8—C7—C5171.86 (17)N12—N11—C16—C151.2 (4)
N4—C5—C7—N8167.24 (18)N14—C15—C16—N11−1.1 (4)
C6—C5—C7—N8−15.3 (3)C10—C15—C16—N11179.0 (2)
N4—C5—C7—C19−13.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C19—H193···N40.962.482.875 (3)104
C20—H202···N80.962.462.816 (3)101

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2223).

References

  • Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem.41, 1253–1261. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Karczmarzyk, Z., Mojzych, M. & Rykowski, A. (2000). J. Chem. Crystallogr.30, 423–427.
  • Lewis, M., Barnes, C. L. & Glaser, R. (2000). Acta Cryst. C56, 393–396. [PubMed]
  • Mojzych, M. & Rykowski, A. (2003). Pol. J. Chem.77, 1797–1804.
  • Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174. [PubMed]
  • Rykowski, A., Mojzych, M. & Karczmarzyk, Z. (2000). Heterocycles, 53, 2175–2181.
  • Sauro, V. A. & Workentin, M. S. (2001). J. Org. Chem.66, 831–838. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tai, X.-S., Xu, J., Feng, Y.-M. & Liang, Z.-P. (2008). Acta Cryst. E64, o905. [PMC free article] [PubMed]
  • Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem.38, 781–786. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography