PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1910–o1911.
Published online 2009 July 18. doi:  10.1107/S1600536809027275
PMCID: PMC2977493

4-Amino-3-(o-tolyl­oxymeth­yl)-1H-1,2,4-triazole-5(4H)-thione

Abstract

The asymmetric unit of the title compound, C10H12N4OS, contains two independent mol­ecules, A and B, which differ significantly in the relative orientations of the benzene and triazole rings. The dihedral angle between the above two rings is 6.94 (5)° in mol­ecule A and 77.60 (5)° in mol­ecule B. In the crystal, mol­ecules are linked into a three-dimensional network by N—H(...)S, N—H(...)O, N—H(...)N and C—H(...)S hydrogen bonds and π–π inter­actions between the benzene and triazole rings [centroid–centroid distance = 3.5311 (6) Å] are also present.

Related literature

For the pharmaceutical activity of triazole derivatives, see: Amir et al. (2008 [triangle]); Kuş et al. (2008 [triangle]); Padmavathi et al. (2008 [triangle]); Sztanke et al. (2008 [triangle]). For the preparation, see: Eweiss et al. (1986 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Fun et al. (2008a [triangle],b [triangle], 2009 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1910-scheme1.jpg

Experimental

Crystal data

  • C10H12N4OS
  • M r = 236.30
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1910-efi1.jpg
  • a = 8.6908 (1) Å
  • b = 22.2551 (3) Å
  • c = 11.3771 (2) Å
  • V = 2200.50 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 100 K
  • 0.58 × 0.29 × 0.27 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.855, T max = 0.929
  • 41442 measured reflections
  • 9726 independent reflections
  • 9145 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.075
  • S = 1.01
  • 9726 reflections
  • 315 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.19 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 4628 Friedel pairs
  • Flack parameter: −0.02 (3)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027275/ci2852sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027275/ci2852Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and WCL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). WCL thanks USM for a student assistantship. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK Surathkal, for providing research facilities.

supplementary crystallographic information

Comment

1,2,4-Triazole and its derivatives were reported to exhibit various pharmacological activities such as antimicrobial, analgesic, anticancer, anti-inflammatory and antioxidant properties (Amir et al., 2008; Kuş et al., 2008; Padmavathi et al., 2008; Sztanke et al., 2008). Some of the present day drugs such as ribavirin (antiviral agent), rizatriptan (antimigraine agent), alprazolam (anxiolytic agent), fluconazole and itraconazole (antifungal agents) are the best examples for potent molecules possessing triazole nucleus. The amino and mercapto groups of 1,2,4-triazoles serve as readily accessible nucleophilic centers for the preparation of N-bridged heterocycles. Keeping in view of this biological importance, the title compound was synthesized and its crystal structure is reported here.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are found to have normal values and are comparable to closely related structures (Fun et al., 2008a,b,2009). The dihedral angle between the triazole ring (N1A-N3A/C1A/C2A) and the benzene ring (C4A-C9A) of molecule A is 6.94 (5)°, whereas the dihedral angle between the triazole ring (N1B—N3B/C1B/C2B) and the benzene ring (C4B—C9B) of molecule B is 77.60 (5)° indicating that for molecule B, these rings are significantly twisted from each other.

The crystal packing (Fig. 2) is consolidated by N—H···S, N—H···O, N—H···N and C—H···S hydrogen bonds, linking the molecules into a three-dimensional network (Table 1). The crystal packing is further strengthened by π-π interactions between the N1A-N3A/C1A/C2A (centroid Cg1) ring of molecule A at (x, y, z) and C4A-C9A (centroid Cg2) ring of molecule A at (x-1/2, 3/2-y, z), with a centroid-to-centroid distance of 3.5311 (6) Å.

Experimental

O-Cressoyloxyacetyl hydrazine (18.0 g, 0.1 mol) was added slowly to a solution of potassium hydroxide (8.4 g, 0.15 mol) in ethanol (150 ml). The resulting mixture was stirred well till a clear solution was obtained. Carbon disulfide (11.4 g, 0.15 mol) was added drop-wise and the contents were stirred vigorously. Further stirring was continued for 24 h. The resulting mixture was diluted with 100 ml of ether and the precipitate formed was collected by filtration, washed with dry ether and dried at 65 °C under vacuum. It was used for the next step without any purification.

A mixture of potassium dithiocarbazinate (29.4 g, 0.1 mol), hydrazine hydrate (99%, 0.2 mol) and water (2 ml) was gently heated to boil for 30 minutes. Heating was continued until the evacuation of hydrogen sulfide ceases. The reaction mixture was cooled to room temperature, diluted with water (100 ml) and acidified with HCl. The solid mass that separated was collected by filtration, washed with water and dried. Recrystallization was done from ethanol. Yield: 13.7 g, 58.0%, m.p. 400–402 K (Eweiss et al., 1986).

Refinement

N-bound H atoms were located in a difference Fourier map and refined freely. C-bound H atoms were positioned geometrically [C-H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The three-dimensional network of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C10H12N4OSF(000) = 992
Mr = 236.30Dx = 1.427 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9872 reflections
a = 8.6908 (1) Åθ = 2.5–35.1°
b = 22.2551 (3) ŵ = 0.28 mm1
c = 11.3771 (2) ÅT = 100 K
V = 2200.50 (5) Å3Block, colourless
Z = 80.58 × 0.29 × 0.27 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer9726 independent reflections
Radiation source: fine-focus sealed tube9145 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 35.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −14→14
Tmin = 0.855, Tmax = 0.929k = −35→35
41442 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075w = 1/[σ2(Fo2) + (0.0433P)2 + 0.2689P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
9726 reflectionsΔρmax = 0.33 e Å3
315 parametersΔρmin = −0.19 e Å3
1 restraintAbsolute structure: Flack (1983), 4628 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.02 (3)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1A0.08512 (3)0.532701 (9)0.19019 (2)0.01524 (4)
O1A0.33838 (9)0.77054 (3)−0.00794 (7)0.01789 (13)
N1A0.18273 (11)0.70334 (3)0.15180 (7)0.01539 (14)
N2A0.10587 (10)0.65525 (3)0.20140 (8)0.01580 (14)
N3A0.25603 (10)0.61737 (3)0.07393 (7)0.01237 (13)
N4A0.34200 (11)0.57827 (3)0.00333 (7)0.01508 (14)
C1A0.14799 (11)0.60200 (4)0.15681 (8)0.01298 (14)
C2A0.27309 (11)0.67851 (4)0.07402 (8)0.01336 (15)
C3A0.38198 (12)0.70933 (4)−0.00655 (9)0.01540 (15)
H3AA0.48680.70510.02150.018*
H3AB0.37540.6923−0.08490.018*
C4A0.42434 (11)0.80824 (4)−0.07765 (9)0.01387 (14)
C5A0.53343 (13)0.78880 (4)−0.15850 (9)0.01853 (17)
H5AA0.55240.7480−0.16850.022*
C6A0.61434 (14)0.83133 (5)−0.22470 (10)0.02183 (19)
H6AA0.68700.8188−0.27950.026*
C7A0.58630 (13)0.89233 (5)−0.20862 (9)0.02055 (19)
H7AA0.64130.9207−0.25160.025*
C8A0.47564 (13)0.91072 (4)−0.12798 (9)0.01740 (17)
H8AA0.45710.9516−0.11800.021*
C9A0.39210 (11)0.86951 (4)−0.06189 (8)0.01362 (15)
C10A0.27083 (13)0.88901 (4)0.02363 (10)0.01894 (18)
H10A0.27610.93180.03400.028*
H10B0.28750.86950.09780.028*
H10C0.17120.8783−0.00610.028*
S1B0.89572 (3)0.691199 (11)0.41761 (2)0.01782 (5)
O1B0.57901 (9)0.49790 (3)0.17514 (7)0.01652 (13)
N1B0.53427 (11)0.63533 (4)0.24499 (8)0.01717 (15)
N2B0.63760 (11)0.67783 (4)0.28244 (8)0.01748 (15)
N3B0.71458 (10)0.59546 (3)0.35636 (7)0.01283 (13)
N4B0.79643 (11)0.55068 (4)0.41643 (9)0.01770 (14)
C1B0.74960 (12)0.65567 (4)0.35097 (8)0.01391 (15)
C2B0.58365 (11)0.58530 (4)0.29216 (8)0.01315 (15)
C3B0.50974 (11)0.52552 (4)0.27590 (8)0.01388 (15)
H3BA0.52560.50080.34500.017*
H3BB0.39990.53020.26370.017*
C4B0.53275 (11)0.43946 (4)0.15063 (8)0.01406 (15)
C5B0.40519 (12)0.41259 (4)0.20300 (9)0.01678 (16)
H5BA0.34700.43360.25790.020*
C6B0.36530 (13)0.35369 (4)0.17238 (9)0.01886 (18)
H6BA0.27940.33570.20600.023*
C7B0.45408 (14)0.32217 (4)0.09177 (9)0.01915 (18)
H7BA0.42870.28280.07230.023*
C8B0.58097 (13)0.34962 (4)0.04025 (9)0.01721 (17)
H8BA0.63960.3281−0.01370.021*
C9B0.62274 (12)0.40874 (4)0.06744 (8)0.01428 (15)
C10B0.75914 (14)0.43787 (5)0.00943 (9)0.02039 (18)
H10D0.82090.4077−0.02800.031*
H10E0.81950.45840.06760.031*
H10F0.72410.4662−0.04830.031*
H1N40.281 (2)0.5525 (8)−0.0322 (16)0.028 (4)*
H2N40.403 (2)0.5622 (7)0.0500 (16)0.024 (4)*
H3N40.811 (2)0.5664 (7)0.4897 (18)0.034 (4)*
H4N40.892 (2)0.5482 (9)0.3764 (18)0.038 (5)*
H2N10.050 (2)0.6623 (8)0.2633 (17)0.029 (4)*
H2N20.638 (2)0.7148 (8)0.2518 (16)0.028 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S1A0.01653 (10)0.01155 (8)0.01764 (9)−0.00295 (7)0.00062 (8)0.00233 (7)
O1A0.0183 (3)0.0099 (2)0.0255 (3)0.0003 (2)0.0083 (3)0.0032 (2)
N1A0.0178 (4)0.0107 (3)0.0176 (3)−0.0016 (3)0.0030 (3)0.0003 (2)
N2A0.0175 (4)0.0120 (3)0.0179 (3)−0.0015 (3)0.0046 (3)−0.0002 (3)
N3A0.0128 (3)0.0096 (3)0.0147 (3)−0.0002 (2)0.0010 (3)0.0000 (2)
N4A0.0162 (4)0.0122 (3)0.0168 (3)0.0013 (3)0.0016 (3)−0.0019 (2)
C1A0.0129 (4)0.0119 (3)0.0141 (3)−0.0011 (3)−0.0001 (3)0.0012 (3)
C2A0.0146 (4)0.0098 (3)0.0156 (3)−0.0012 (3)0.0005 (3)0.0006 (3)
C3A0.0166 (4)0.0099 (3)0.0197 (4)0.0000 (3)0.0035 (3)0.0013 (3)
C4A0.0146 (4)0.0114 (3)0.0157 (3)−0.0012 (3)0.0016 (3)0.0022 (3)
C5A0.0207 (5)0.0161 (4)0.0188 (4)0.0001 (3)0.0055 (4)0.0002 (3)
C6A0.0237 (5)0.0241 (4)0.0176 (4)−0.0014 (4)0.0069 (4)0.0033 (3)
C7A0.0217 (5)0.0220 (4)0.0180 (4)−0.0039 (4)0.0027 (4)0.0068 (3)
C8A0.0193 (5)0.0140 (3)0.0189 (4)−0.0024 (3)−0.0007 (3)0.0053 (3)
C9A0.0135 (4)0.0120 (3)0.0153 (4)−0.0004 (3)−0.0009 (3)0.0018 (3)
C10A0.0184 (5)0.0138 (3)0.0246 (4)0.0001 (3)0.0047 (4)−0.0004 (3)
S1B0.01796 (11)0.01668 (9)0.01883 (10)−0.00401 (8)0.00217 (9)−0.00556 (8)
O1B0.0195 (3)0.0124 (2)0.0176 (3)−0.0037 (2)0.0050 (3)−0.0036 (2)
N1B0.0191 (4)0.0138 (3)0.0186 (3)0.0014 (3)−0.0034 (3)−0.0004 (3)
N2B0.0212 (4)0.0110 (3)0.0202 (3)0.0016 (3)−0.0026 (3)−0.0004 (3)
N3B0.0142 (4)0.0101 (3)0.0141 (3)0.0004 (2)−0.0005 (3)−0.0001 (2)
N4B0.0175 (4)0.0150 (3)0.0206 (3)0.0016 (3)−0.0039 (3)0.0023 (3)
C1B0.0168 (4)0.0112 (3)0.0137 (3)−0.0004 (3)0.0020 (3)−0.0018 (3)
C2B0.0136 (4)0.0127 (3)0.0131 (3)0.0009 (3)0.0001 (3)−0.0012 (3)
C3B0.0146 (4)0.0129 (3)0.0141 (3)−0.0005 (3)0.0012 (3)−0.0009 (3)
C4B0.0155 (4)0.0115 (3)0.0152 (3)−0.0004 (3)−0.0013 (3)−0.0009 (3)
C5B0.0169 (4)0.0148 (3)0.0186 (4)−0.0018 (3)0.0020 (3)−0.0009 (3)
C6B0.0194 (4)0.0152 (3)0.0220 (4)−0.0033 (3)−0.0005 (4)0.0000 (3)
C7B0.0235 (5)0.0128 (3)0.0212 (4)−0.0021 (3)−0.0032 (4)−0.0010 (3)
C8B0.0212 (5)0.0142 (3)0.0163 (4)0.0013 (3)−0.0028 (3)−0.0027 (3)
C9B0.0153 (4)0.0143 (3)0.0132 (3)0.0009 (3)−0.0007 (3)−0.0011 (3)
C10B0.0222 (5)0.0212 (4)0.0178 (4)−0.0025 (4)0.0049 (4)−0.0027 (3)

Geometric parameters (Å, °)

S1A—C1A1.6796 (9)S1B—C1B1.6771 (10)
O1A—C4A1.3751 (11)O1B—C4B1.3895 (11)
O1A—C3A1.4141 (11)O1B—C3B1.4334 (12)
N1A—C2A1.3057 (12)N1B—C2B1.3086 (12)
N1A—N2A1.3821 (11)N1B—N2B1.3720 (12)
N2A—C1A1.3401 (12)N2B—C1B1.3412 (14)
N2A—H2N10.869 (19)N2B—H2N20.894 (18)
N3A—C2A1.3687 (11)N3B—C2B1.3709 (13)
N3A—C1A1.3740 (12)N3B—C1B1.3754 (11)
N3A—N4A1.4003 (11)N3B—N4B1.4023 (11)
N4A—H1N40.879 (18)N4B—H3N40.91 (2)
N4A—H2N40.832 (18)N4B—H4N40.95 (2)
C2A—C3A1.4854 (13)C2B—C3B1.4888 (12)
C3A—H3AA0.97C3B—H3BA0.97
C3A—H3AB0.97C3B—H3BB0.97
C4A—C5A1.3901 (14)C4B—C5B1.3935 (14)
C4A—C9A1.4034 (12)C4B—C9B1.4054 (13)
C5A—C6A1.3992 (14)C5B—C6B1.4000 (13)
C5A—H5AA0.93C5B—H5BA0.93
C6A—C7A1.3914 (16)C6B—C7B1.3886 (15)
C6A—H6AA0.93C6B—H6BA0.93
C7A—C8A1.3908 (16)C7B—C8B1.3903 (16)
C7A—H7AA0.93C7B—H7BA0.93
C8A—C9A1.3905 (13)C8B—C9B1.3994 (13)
C8A—H8AA0.93C8B—H8BA0.93
C9A—C10A1.4986 (14)C9B—C10B1.5037 (15)
C10A—H10A0.96C10B—H10D0.96
C10A—H10B0.96C10B—H10E0.96
C10A—H10C0.96C10B—H10F0.96
C4A—O1A—C3A116.66 (8)C4B—O1B—C3B116.13 (7)
C2A—N1A—N2A103.87 (7)C2B—N1B—N2B104.16 (8)
C1A—N2A—N1A113.47 (8)C1B—N2B—N1B113.71 (8)
C1A—N2A—H2N1128.2 (12)C1B—N2B—H2N2124.2 (12)
N1A—N2A—H2N1117.4 (12)N1B—N2B—H2N2121.1 (12)
C2A—N3A—C1A108.73 (7)C2B—N3B—C1B108.71 (8)
C2A—N3A—N4A124.09 (8)C2B—N3B—N4B124.29 (8)
C1A—N3A—N4A127.12 (7)C1B—N3B—N4B127.00 (8)
N3A—N4A—H1N4110.4 (12)N3B—N4B—H3N4104.0 (11)
N3A—N4A—H2N4104.0 (12)N3B—N4B—H4N4104.5 (12)
H1N4—N4A—H2N4113.4 (15)H3N4—N4B—H4N4110.0 (17)
N2A—C1A—N3A103.07 (7)N2B—C1B—N3B102.92 (8)
N2A—C1A—S1A129.61 (7)N2B—C1B—S1B129.71 (7)
N3A—C1A—S1A127.31 (7)N3B—C1B—S1B127.36 (8)
N1A—C2A—N3A110.86 (8)N1B—C2B—N3B110.50 (8)
N1A—C2A—C3A127.30 (8)N1B—C2B—C3B124.61 (9)
N3A—C2A—C3A121.84 (8)N3B—C2B—C3B124.88 (8)
O1A—C3A—C2A106.32 (8)O1B—C3B—C2B107.54 (8)
O1A—C3A—H3AA110.5O1B—C3B—H3BA110.2
C2A—C3A—H3AA110.5C2B—C3B—H3BA110.2
O1A—C3A—H3AB110.5O1B—C3B—H3BB110.2
C2A—C3A—H3AB110.5C2B—C3B—H3BB110.2
H3AA—C3A—H3AB108.7H3BA—C3B—H3BB108.5
O1A—C4A—C5A124.21 (8)O1B—C4B—C5B123.10 (8)
O1A—C4A—C9A114.25 (8)O1B—C4B—C9B115.43 (8)
C5A—C4A—C9A121.54 (8)C5B—C4B—C9B121.46 (8)
C4A—C5A—C6A119.23 (9)C4B—C5B—C6B119.51 (9)
C4A—C5A—H5AA120.4C4B—C5B—H5BA120.2
C6A—C5A—H5AA120.4C6B—C5B—H5BA120.2
C7A—C6A—C5A120.08 (10)C7B—C6B—C5B119.98 (10)
C7A—C6A—H6AA120.0C7B—C6B—H6BA120.0
C5A—C6A—H6AA120.0C5B—C6B—H6BA120.0
C8A—C7A—C6A119.67 (9)C6B—C7B—C8B119.82 (9)
C8A—C7A—H7AA120.2C6B—C7B—H7BA120.1
C6A—C7A—H7AA120.2C8B—C7B—H7BA120.1
C9A—C8A—C7A121.58 (9)C7B—C8B—C9B121.72 (9)
C9A—C8A—H8AA119.2C7B—C8B—H8BA119.1
C7A—C8A—H8AA119.2C9B—C8B—H8BA119.1
C8A—C9A—C4A117.87 (9)C8B—C9B—C4B117.51 (9)
C8A—C9A—C10A121.82 (8)C8B—C9B—C10B120.86 (9)
C4A—C9A—C10A120.31 (8)C4B—C9B—C10B121.64 (8)
C9A—C10A—H10A109.5C9B—C10B—H10D109.5
C9A—C10A—H10B109.5C9B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C9A—C10A—H10C109.5C9B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C2A—N1A—N2A—C1A0.60 (11)C2B—N1B—N2B—C1B0.20 (12)
N1A—N2A—C1A—N3A−0.59 (11)N1B—N2B—C1B—N3B0.26 (11)
N1A—N2A—C1A—S1A−179.77 (8)N1B—N2B—C1B—S1B−178.52 (8)
C2A—N3A—C1A—N2A0.35 (10)C2B—N3B—C1B—N2B−0.61 (10)
N4A—N3A—C1A—N2A177.58 (9)N4B—N3B—C1B—N2B179.33 (9)
C2A—N3A—C1A—S1A179.56 (7)C2B—N3B—C1B—S1B178.21 (7)
N4A—N3A—C1A—S1A−3.21 (14)N4B—N3B—C1B—S1B−1.85 (14)
N2A—N1A—C2A—N3A−0.34 (11)N2B—N1B—C2B—N3B−0.59 (11)
N2A—N1A—C2A—C3A179.47 (10)N2B—N1B—C2B—C3B−179.27 (9)
C1A—N3A—C2A—N1A0.00 (11)C1B—N3B—C2B—N1B0.79 (11)
N4A—N3A—C2A—N1A−177.34 (9)N4B—N3B—C2B—N1B−179.15 (9)
C1A—N3A—C2A—C3A−179.83 (9)C1B—N3B—C2B—C3B179.47 (9)
N4A—N3A—C2A—C3A2.84 (14)N4B—N3B—C2B—C3B−0.47 (14)
C4A—O1A—C3A—C2A179.99 (8)C4B—O1B—C3B—C2B175.45 (8)
N1A—C2A—C3A—O1A−16.61 (14)N1B—C2B—C3B—O1B90.26 (11)
N3A—C2A—C3A—O1A163.18 (9)N3B—C2B—C3B—O1B−88.24 (11)
C3A—O1A—C4A—C5A10.15 (15)C3B—O1B—C4B—C5B13.09 (13)
C3A—O1A—C4A—C9A−170.52 (9)C3B—O1B—C4B—C9B−167.61 (8)
O1A—C4A—C5A—C6A−179.92 (10)O1B—C4B—C5B—C6B179.26 (9)
C9A—C4A—C5A—C6A0.80 (16)C9B—C4B—C5B—C6B0.00 (15)
C4A—C5A—C6A—C7A0.55 (17)C4B—C5B—C6B—C7B1.03 (16)
C5A—C6A—C7A—C8A−1.12 (17)C5B—C6B—C7B—C8B−1.06 (16)
C6A—C7A—C8A—C9A0.37 (17)C6B—C7B—C8B—C9B0.06 (16)
C7A—C8A—C9A—C4A0.93 (15)C7B—C8B—C9B—C4B0.93 (14)
C7A—C8A—C9A—C10A−178.93 (10)C7B—C8B—C9B—C10B−179.14 (10)
O1A—C4A—C9A—C8A179.13 (9)O1B—C4B—C9B—C8B179.73 (9)
C5A—C4A—C9A—C8A−1.52 (15)C5B—C4B—C9B—C8B−0.96 (14)
O1A—C4A—C9A—C10A−1.01 (13)O1B—C4B—C9B—C10B−0.20 (13)
C5A—C4A—C9A—C10A178.34 (10)C5B—C4B—C9B—C10B179.11 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4A—H1N4···N4Bi0.88 (2)2.46 (2)3.2651 (12)152 (2)
N4A—H2N4···O1B0.83 (2)2.53 (2)3.3560 (11)171 (2)
N4B—H4N4···S1Aii0.95 (2)2.72 (2)3.6167 (10)157 (2)
N2A—H2N1···S1Biii0.87 (2)2.30 (2)3.1665 (9)174 (2)
N2B—H2N2···N1Aiv0.89 (2)2.18 (2)3.0589 (11)166 (2)
C8A—H8AA···S1Av0.932.863.4537 (10)123
C3B—H3BB···S1A0.972.863.8203 (10)170

Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) x+1, y, z; (iii) x−1, y, z; (iv) x+1/2, −y+3/2, z; (v) −x+1/2, y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2852).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Amir, M., Kumar, H. & Javed, S. A. (2008). Eur. J. Med. Chem.43, 2056–2066. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Eweiss, N. F., Bahajaj, A. A. & Elsherbini, E. A. (1986). J. Heteroat. Chem.23, 1451–1458.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2009). Acta Cryst. E65, o48. [PMC free article] [PubMed]
  • Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B., Muralidharan, A. & Dharmaprakash, S. M. (2008a). Acta Cryst. E64, o1509. [PMC free article] [PubMed]
  • Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1590–o1591. [PMC free article] [PubMed]
  • Kuş, S. C., Kılcıgil, G. A., Özbey, S., Kaynak, F. B., Kaya, M., Çoban, T. & Eke, B. C. (2008). Bioorg. Med. Chem.16, 4294–4303. [PubMed]
  • Padmavathi, V., Thriveni, P., Reddy, G. S. & Deepti, D. (2008). Eur. J. Med. Chem.43, 917–924. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem.43, 404–419. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography