PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m903.
Published online 2009 July 11. doi:  10.1107/S1600536809024015
PMCID: PMC2977491

{4,4′-Dibromo-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}copper(II)

Abstract

In the title compound, [Cu(C16H12Br2N2O2)], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O and two N atoms of the tetra­dentate dianionic 4,4′-dibromo-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphen­olate Schiff base ligand.

Related literature

For background to complexes of Schiff bases, see: Arnold et al. (1998 [triangle]); Jabri et al. (1995 [triangle]); Jiang et al. (2003 [triangle]). For a related structure, see: Feng et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m903-scheme1.jpg

Experimental

Crystal data

  • [Cu(C16H12Br2N2O2)]
  • M r = 487.68
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m903-efi1.jpg
  • a = 8.2848 (4) Å
  • b = 9.6302 (5) Å
  • c = 10.9984 (6) Å
  • α = 115.601 (6)°
  • β = 92.866 (4)°
  • γ = 101.527 (5)°
  • V = 766.10 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.65 mm−1
  • T = 173 K
  • 0.4 × 0.1 × 0.1 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.715, T max = 1 (expected range = 0.368–0.514)
  • 6303 measured reflections
  • 2641 independent reflections
  • 2128 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.060
  • S = 1.01
  • 2641 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024015/tk2481sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024015/tk2481Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Education Department Foundation of Fujian Province of China (grant Nos. JA08212 and 2008 F5053).

supplementary crystallographic information

Comment

Schiff base complexes continue to attract attention owing to their anti-bacterial, anti-viral and other biological activities (Arnold et al., 1998; Jabri et al., 1995; Jiang et al., 2003). In order to extend the study of these compounds, the title complex (I) was synthesized and its crystal structure determined.

The copper atom in the mononuclear complex, Fig. 1, assumes a N2O2 coordination geometry provided by the dinegative, tetradentate Schiff base ligand. The coordination geometry approximates a square planar arrangement. The structure of (I) resembles that of N,N'-ethylene-bis(salicylaldiminato)nickel(II) (Feng et al., 2007).

Experimental

A mixture of N,N'-ethylene-bis(5-bromosalicylaldimine) (0.1 mmol), Cu(NO3)2 (0.1 mmol), DMF (10.0 ml), and ethanol (5.0 ml) was sealed in a 40 mL Teflon-lined stainless steel reactor, heated in an oven at 353 K for 72 h, and then slowly cooled to room temperature. The blue crystals were collected.

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93 – 0.97 Å, and were included in the refinement in the riding model approximation with U(H) set to 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of (I) showing atom labelling and displacement ellipsoids at the 30% probability level.

Crystal data

[Cu(C16H12Br2N2O2)]Z = 2
Mr = 487.68F(000) = 474
Triclinic, P1Dx = 2.114 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2848 (4) ÅCell parameters from 3643 reflections
b = 9.6302 (5) Åθ = 2.4–32.6°
c = 10.9984 (6) ŵ = 6.65 mm1
α = 115.601 (6)°T = 173 K
β = 92.866 (4)°Block, blue
γ = 101.527 (5)°0.4 × 0.1 × 0.1 mm
V = 766.10 (7) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2641 independent reflections
Radiation source: fine-focus sealed tube2128 reflections with I > 2σ(I)
graphiteRint = 0.030
Rotation method data acquisition using ω and [var phi] scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.715, Tmax = 1k = −11→11
6303 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0298P)2] where P = (Fo2 + 2Fc2)/3
2641 reflections(Δ/σ)max = 0.005
208 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.98239 (6)1.20034 (5)0.06363 (4)0.02426 (13)
Br10.55269 (5)0.80260 (4)0.44272 (4)0.03477 (13)
Br21.24837 (5)1.57593 (5)−0.37940 (4)0.03793 (13)
O20.9055 (3)1.2075 (3)−0.1004 (2)0.0258 (6)
O10.7760 (3)1.0630 (3)0.0529 (2)0.0332 (6)
N21.1879 (4)1.3606 (3)0.1009 (3)0.0241 (7)
N11.0890 (4)1.1769 (3)0.2128 (3)0.0241 (7)
C160.9859 (5)1.2886 (4)−0.1568 (4)0.0250 (8)
C150.9173 (5)1.2616 (4)−0.2887 (4)0.0273 (8)
H15A0.81761.1854−0.33230.033*
C140.9942 (5)1.3449 (4)−0.3533 (4)0.0272 (9)
H14A0.94691.3238−0.43990.033*
C131.1434 (5)1.4613 (4)−0.2894 (4)0.0280 (9)
C121.2146 (5)1.4889 (4)−0.1645 (4)0.0278 (9)
H12A1.31381.5666−0.12290.033*
C111.1425 (5)1.4034 (4)−0.0966 (4)0.0246 (8)
C101.2328 (5)1.4321 (4)0.0297 (4)0.0257 (8)
H10A1.33281.50960.06260.031*
C50.7334 (5)1.0083 (4)0.1394 (4)0.0266 (8)
C40.5657 (5)0.9251 (4)0.1244 (4)0.0295 (9)
H4A0.48900.91110.05290.035*
C30.5139 (5)0.8652 (4)0.2115 (4)0.0281 (9)
H3A0.40290.81220.19920.034*
C20.6253 (5)0.8827 (4)0.3184 (4)0.0257 (8)
C10.7877 (5)0.9614 (4)0.3382 (4)0.0248 (8)
H1A0.86130.97280.41050.030*
C60.8457 (5)1.0256 (4)0.2511 (4)0.0246 (8)
C71.0206 (5)1.1058 (4)0.2782 (4)0.0254 (8)
H7A1.08761.10530.34830.030*
C81.2681 (5)1.2481 (4)0.2451 (4)0.0290 (9)
H8A1.32721.17600.18380.035*
H8B1.30951.27300.33810.035*
C91.2922 (5)1.3988 (4)0.2276 (4)0.0279 (8)
H9A1.25991.48120.30430.033*
H9B1.40831.43680.22330.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0249 (3)0.0287 (3)0.0179 (2)0.00328 (19)0.00093 (18)0.0109 (2)
Br10.0388 (3)0.0389 (2)0.0343 (2)0.00736 (19)0.00758 (18)0.0242 (2)
Br20.0462 (3)0.0443 (3)0.0355 (2)0.0127 (2)0.00954 (19)0.0280 (2)
O20.0260 (15)0.0306 (14)0.0192 (13)0.0036 (11)0.0022 (11)0.0112 (12)
O10.0318 (17)0.0439 (16)0.0214 (14)−0.0038 (12)−0.0038 (11)0.0190 (13)
N20.0292 (18)0.0242 (16)0.0174 (16)0.0055 (13)0.0008 (13)0.0087 (14)
N10.0229 (18)0.0279 (17)0.0207 (17)0.0058 (13)0.0009 (13)0.0107 (14)
C160.028 (2)0.026 (2)0.022 (2)0.0113 (17)0.0062 (16)0.0087 (17)
C150.029 (2)0.029 (2)0.022 (2)0.0089 (17)0.0008 (16)0.0101 (17)
C140.031 (2)0.033 (2)0.021 (2)0.0151 (18)0.0038 (16)0.0125 (18)
C130.037 (2)0.032 (2)0.027 (2)0.0167 (18)0.0134 (18)0.0190 (18)
C120.025 (2)0.031 (2)0.025 (2)0.0058 (17)0.0052 (16)0.0112 (18)
C110.027 (2)0.028 (2)0.0213 (19)0.0092 (17)0.0042 (16)0.0120 (16)
C100.027 (2)0.0228 (19)0.024 (2)0.0049 (16)0.0027 (16)0.0076 (17)
C50.030 (2)0.026 (2)0.020 (2)0.0083 (17)0.0018 (16)0.0072 (17)
C40.025 (2)0.038 (2)0.024 (2)0.0031 (17)−0.0012 (16)0.0156 (18)
C30.024 (2)0.029 (2)0.028 (2)0.0043 (17)0.0057 (17)0.0107 (18)
C20.031 (2)0.025 (2)0.023 (2)0.0081 (17)0.0071 (17)0.0116 (17)
C10.028 (2)0.024 (2)0.021 (2)0.0073 (16)0.0009 (16)0.0083 (16)
C60.030 (2)0.0209 (19)0.020 (2)0.0088 (16)−0.0004 (16)0.0063 (16)
C70.028 (2)0.028 (2)0.0187 (19)0.0094 (17)−0.0007 (16)0.0084 (17)
C80.022 (2)0.038 (2)0.027 (2)0.0051 (17)−0.0025 (16)0.0165 (18)
C90.024 (2)0.032 (2)0.022 (2)0.0023 (17)−0.0020 (16)0.0096 (17)

Geometric parameters (Å, °)

Cu1—O11.905 (2)C12—H12A0.9300
Cu1—O21.917 (2)C11—C101.431 (5)
Cu1—N11.943 (3)C10—H10A0.9300
Cu1—N21.945 (3)C5—C41.420 (5)
Br1—C21.907 (3)C5—C61.432 (5)
Br2—C131.898 (3)C4—C31.362 (5)
O2—C161.301 (4)C4—H4A0.9300
O1—C51.302 (4)C3—C21.385 (5)
N2—C101.272 (4)C3—H3A0.9300
N2—C91.461 (4)C2—C11.361 (5)
N1—C71.273 (4)C1—C61.404 (5)
N1—C81.459 (4)C1—H1A0.9300
C16—C151.423 (5)C6—C71.447 (5)
C16—C111.432 (5)C7—H7A0.9300
C15—C141.374 (5)C8—C91.521 (5)
C15—H15A0.9300C8—H8A0.9700
C14—C131.399 (5)C8—H8B0.9700
C14—H14A0.9300C9—H9A0.9700
C13—C121.358 (5)C9—H9B0.9700
C12—C111.404 (5)
O1—Cu1—O291.88 (10)C11—C10—H10A117.2
O1—Cu1—N192.75 (11)O1—C5—C4119.4 (3)
O2—Cu1—N1170.19 (12)O1—C5—C6124.3 (3)
O1—Cu1—N2171.68 (11)C4—C5—C6116.3 (3)
O2—Cu1—N292.89 (11)C3—C4—C5122.0 (4)
N1—Cu1—N283.60 (12)C3—C4—H4A119.0
C16—O2—Cu1127.2 (2)C5—C4—H4A119.0
C5—O1—Cu1127.5 (2)C4—C3—C2120.5 (4)
C10—N2—C9120.6 (3)C4—C3—H3A119.8
C10—N2—Cu1126.9 (3)C2—C3—H3A119.8
C9—N2—Cu1112.5 (2)C1—C2—C3120.3 (3)
C7—N1—C8119.9 (3)C1—C2—Br1119.0 (3)
C7—N1—Cu1127.3 (3)C3—C2—Br1120.7 (3)
C8—N1—Cu1112.8 (2)C2—C1—C6120.9 (3)
O2—C16—C15118.8 (3)C2—C1—H1A119.5
O2—C16—C11124.6 (3)C6—C1—H1A119.5
C15—C16—C11116.6 (3)C1—C6—C5119.9 (3)
C14—C15—C16121.9 (3)C1—C6—C7117.5 (3)
C14—C15—H15A119.1C5—C6—C7122.6 (3)
C16—C15—H15A119.1N1—C7—C6124.6 (3)
C15—C14—C13120.2 (3)N1—C7—H7A117.7
C15—C14—H14A119.9C6—C7—H7A117.7
C13—C14—H14A119.9N1—C8—C9105.9 (3)
C12—C13—C14119.8 (3)N1—C8—H8A110.6
C12—C13—Br2120.3 (3)C9—C8—H8A110.6
C14—C13—Br2119.9 (3)N1—C8—H8B110.6
C13—C12—C11121.8 (3)C9—C8—H8B110.6
C13—C12—H12A119.1H8A—C8—H8B108.7
C11—C12—H12A119.1N2—C9—C8107.7 (3)
C12—C11—C16119.6 (3)N2—C9—H9A110.2
C12—C11—C10117.8 (3)C8—C9—H9A110.2
C16—C11—C10122.5 (3)N2—C9—H9B110.2
N2—C10—C11125.6 (3)C8—C9—H9B110.2
N2—C10—H10A117.2H9A—C9—H9B108.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2481).

References

  • Arnold, M., Brown, D. A., Deeg, O., Errington, W., Haase, W., Herlihy, K., Kemp, T. J., Nimir, H. & Werner, R. (1998). Inorg. Chem.37, 2920–2924.
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Feng, X., Du, Z.-X., Ye, B.-X. & Cui, F.-N. (2007). Chin. J. Struct. Chem.26, 1033–1038.
  • Jabri, E., Carr, M. B. & Hausinger, R. P. (1995). Science, 268, 998–1002. [PubMed]
  • Jiang, Y.-M., Zhang, S.-H., Xu, Q. & Xiao, Y. (2003). Huaxue Xuebao, 61, 573–577.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography