PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m1000.
Published online 2009 July 29. doi:  10.1107/S1600536809029365
PMCID: PMC2977490

2-Amino-5-nitro­pyridinium tetraoxido­rhenate(VII) monohydrate

Abstract

All the residues of the title compound, (C5H6N3O2)[ReO4]·H2O, are located on general crystallographic positions. The 2-amino-5-nitro­pyridinium cation has a typical planar conformation with one of the nitro O atoms −0.058 (5) Å out of plane; the amine H atoms are also a little out of the main ring plane towards the opposite side of the aforementioned O atom [by 0.02 (4) and 0.04 (4) Å]. The perrhenate anion is nearly ideally tetra­hedral. Three distinct N—H(...)O hydrogen bonds give rise to C(8) zigzag chains running along [100]. R 4 4(12) rings involving the two hydrogen bonds in which the water mol­ecules inter­act with the perrhenate anions are also present.

Related literature

For the structural analyses of related 2-amino-5-nitro­pyridium salts and their potential application as non-linear optical materials, see: Masse & Zyss (1991 [triangle]); Puig-Molina et al. (1998 [triangle]); Aakeröy et al. (1998 [triangle]); Pecaut et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1000-scheme1.jpg

Experimental

Crystal data

  • (C5H6N3O2)[ReO4]·H2O
  • M r = 408.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1000-efi1.jpg
  • a = 9.6914 (3) Å
  • b = 9.1357 (3) Å
  • c = 13.4636 (4) Å
  • β = 120.120 (2)°
  • V = 1031.08 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 11.81 mm−1
  • T = 295 K
  • 0.10 × 0.06 × 0.05 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.33, T max = 0.55
  • 30757 measured reflections
  • 2374 independent reflections
  • 2175 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.015
  • wR(F 2) = 0.033
  • S = 1.05
  • 2374 reflections
  • 158 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.88 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029365/ez2177sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029365/ez2177Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT).

supplementary crystallographic information

Experimental

Crystals of the title compound were obtained by slow evaporation from a water solution of analytical grade reagents on a 1:1 molar ratio. The reagents used were 2-amino-5-nitropyridine (99.5%) and a perrhenic acid solution (65–75% water 99.5%), both purchased from Aldrich.

Refinement

The structure was solved by direct methods using SHELXS97. All H atoms were first located on a difference Fourier map as a check for data quality; those bonded to C and N aromatic atoms were then placed at idealized positions and refined as riding [C—H=0.93 Å, N—H=0.86 Å, Uiso(H)=1.2Ueq(C) and Uiso(H)=1.2Ueq(N)]. The coordinates of the amine H atoms were then refined only with the restraint that the N—H distance would be 0.89 Å within 0.2 Å. The positions of the H atoms belonging to the water molecule were also restrained so that the intramolecular O—H distance would be 0.89 Å and the H—H distance 1.40 Å, both within 0.02 Å, thus enforcing an acceptable geometry of the water molecule [Uiso(H)=1.5Ueq(O)].

Examination of the crystal structure with PLATON (Spek, 2009) showed that there are no solvent-accessible voids in the crystal lattice.

Figures

Fig. 1.
ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% level.
Fig. 2.
Zigzag chain running along the a axis. Small ring motifs made of a perrhenate anion and two water molecules are included in the chain. Hydrogen bonds are indicated with dashed lines.

Crystal data

(C5H6N3O2)[ReO4]·H2OF(000) = 760
Mr = 408.34Dx = 2.631 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9920 reflections
a = 9.6914 (3) Åθ = 2.4–32.3°
b = 9.1357 (3) ŵ = 11.81 mm1
c = 13.4636 (4) ÅT = 295 K
β = 120.120 (2)°Prism, translucent colourless
V = 1031.08 (6) Å30.10 × 0.06 × 0.05 mm
Z = 4

Data collection

Bruker APEXII diffractometer2374 independent reflections
Radiation source: fine-focus sealed tube2175 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.33, Tmax = 0.55k = −11→11
30757 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.033w = 1/[σ2(Fo2) + (0.0122P)2 + 1.4451P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2374 reflectionsΔρmax = 0.88 e Å3
158 parametersΔρmin = −0.72 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00774 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2958 (3)0.4684 (3)0.0719 (2)0.0338 (5)
H10.21450.41190.04930.041*
C20.4404 (3)0.4063 (3)0.1067 (2)0.0315 (6)
N20.4512 (3)0.2632 (3)0.1047 (3)0.0434 (6)
H2A0.367 (3)0.204 (3)0.080 (3)0.052*
H2B0.543 (2)0.219 (4)0.124 (3)0.052*
C30.5736 (3)0.4998 (3)0.1440 (3)0.0352 (6)
H30.67410.46050.16840.042*
C40.5549 (3)0.6463 (3)0.1442 (2)0.0362 (6)
H40.64200.70860.16880.043*
C50.4020 (3)0.7029 (3)0.1067 (2)0.0332 (6)
N30.3785 (4)0.8592 (3)0.1068 (2)0.0437 (6)
O10.4946 (4)0.9377 (3)0.1387 (3)0.0717 (9)
O20.2459 (3)0.9055 (3)0.0781 (3)0.0632 (7)
C60.2737 (3)0.6133 (3)0.0712 (2)0.0336 (6)
H60.17280.65170.04690.040*
O30.1012 (3)0.2314 (2)0.0301 (2)0.0538 (6)
H3A0.083 (5)0.174 (3)0.076 (2)0.081*
H3B0.079 (5)0.174 (3)−0.030 (2)0.081*
Re0.905465 (12)0.037384 (13)0.215124 (10)0.03195 (6)
O40.8222 (3)−0.1153 (3)0.1338 (2)0.0680 (7)
O50.7677 (3)0.1758 (3)0.1707 (3)0.0632 (7)
O60.9713 (4)−0.0024 (3)0.3551 (2)0.0674 (8)
O71.0618 (3)0.0893 (3)0.1987 (3)0.0664 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0264 (11)0.0290 (12)0.0452 (15)−0.0007 (9)0.0174 (11)0.0031 (11)
C20.0289 (12)0.0319 (14)0.0329 (15)0.0032 (11)0.0150 (11)0.0054 (12)
N20.0375 (13)0.0281 (13)0.0627 (18)0.0052 (11)0.0237 (14)0.0057 (13)
C30.0262 (13)0.0400 (16)0.0369 (16)0.0004 (11)0.0142 (12)0.0010 (13)
C40.0312 (13)0.0411 (17)0.0341 (16)−0.0090 (12)0.0147 (12)−0.0035 (13)
C50.0417 (15)0.0277 (14)0.0296 (15)0.0020 (12)0.0175 (12)0.0023 (12)
N30.0597 (17)0.0299 (13)0.0415 (15)0.0009 (12)0.0254 (13)0.0003 (11)
O10.080 (2)0.0345 (13)0.108 (3)−0.0181 (13)0.0530 (19)−0.0083 (14)
O20.0674 (17)0.0398 (14)0.0761 (19)0.0152 (13)0.0313 (15)0.0003 (13)
C60.0320 (13)0.0329 (15)0.0351 (15)0.0054 (12)0.0161 (12)0.0046 (13)
O30.0643 (16)0.0382 (13)0.0750 (19)−0.0090 (12)0.0471 (15)−0.0043 (13)
Re0.02646 (7)0.03566 (8)0.03418 (8)0.00296 (4)0.01554 (5)0.00215 (5)
O40.0773 (19)0.0537 (16)0.0667 (18)−0.0151 (14)0.0315 (15)−0.0156 (14)
O50.0447 (13)0.0583 (16)0.0843 (19)0.0226 (12)0.0307 (13)0.0131 (15)
O60.085 (2)0.0780 (19)0.0394 (15)0.0150 (16)0.0313 (14)0.0090 (13)
O70.0398 (13)0.083 (2)0.086 (2)0.0057 (13)0.0389 (14)0.0225 (17)

Geometric parameters (Å, °)

N1—C61.341 (4)C5—C61.360 (4)
N1—C21.358 (3)C5—N31.446 (4)
N1—H10.8600N3—O11.216 (4)
C2—N21.313 (4)N3—O21.217 (4)
C2—C31.413 (4)C6—H60.9300
N2—H2A0.89 (3)O3—H3A0.89 (3)
N2—H2B0.89 (3)O3—H3B0.89 (3)
C3—C41.351 (4)Re—O61.698 (3)
C3—H30.9300Re—O71.704 (2)
C4—C51.402 (4)Re—O41.705 (3)
C4—H40.9300Re—O51.714 (2)
C6—N1—C2123.2 (2)C6—C5—N3118.6 (3)
C6—N1—H1118.4C4—C5—N3120.1 (3)
C2—N1—H1118.4O1—N3—O2123.3 (3)
N2—C2—N1119.2 (3)O1—N3—C5117.7 (3)
N2—C2—C3122.8 (3)O2—N3—C5119.0 (3)
N1—C2—C3118.0 (3)N1—C6—C5118.5 (2)
C2—N2—H2A123 (2)N1—C6—H6120.7
C2—N2—H2B122 (2)C5—C6—H6120.7
H2A—N2—H2B115 (3)H3A—O3—H3B104 (3)
C4—C3—C2120.0 (3)O6—Re—O7109.89 (15)
C4—C3—H3120.0O6—Re—O4109.31 (15)
C2—C3—H3120.0O7—Re—O4108.01 (15)
C3—C4—C5118.9 (3)O6—Re—O5109.77 (14)
C3—C4—H4120.6O7—Re—O5109.69 (13)
C5—C4—H4120.6O4—Re—O5110.15 (14)
C6—C5—C4121.3 (3)
C6—N1—C2—N2179.9 (3)C4—C5—N3—O11.0 (4)
C6—N1—C2—C30.1 (4)C6—C5—N3—O21.9 (4)
N2—C2—C3—C4−179.9 (3)C4—C5—N3—O2−177.2 (3)
N1—C2—C3—C4−0.1 (4)C2—N1—C6—C50.1 (4)
C2—C3—C4—C5−0.2 (4)C4—C5—C6—N1−0.4 (4)
C3—C4—C5—C60.4 (4)N3—C5—C6—N1−179.5 (3)
C3—C4—C5—N3179.5 (3)N1—C2—N2—H2A1(3)
C6—C5—N3—O1−179.9 (3)C3—C2—N2—H2B−3(3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.932.738 (3)157
N1—H1···O6i0.862.633.049 (4)112
N2—H2A···O30.89 (3)2.33 (3)3.030 (4)135 (3)
N2—H2A···O4ii0.89 (3)2.65 (3)3.259 (4)127 (3)
N2—H2B···O50.89 (3)1.98 (3)2.846 (3)164 (3)
O3—H3A···O7iii0.89 (3)1.93 (3)2.802 (4)167 (3)
O3—H3B···O4ii0.89 (3)2.13 (3)2.862 (4)139 (3)

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x+1, −y, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2177).

References

  • Aakeröy, C. B., Beatty, A. M., Nieuwenhuyzen, M. & Zou, M. (1998). J. Mater. Chem.8, 1385–1389.
  • Bruker (2004). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Masse, R. & Zyss, J. (1991). Mol. Eng.1, 141–152.
  • Pecaut, J., Le Fur, Y. & Masse, R. (1993). Acta Cryst. B49, 535–541.
  • Puig-Molina, A., Alvarez-Larena, A., Piniella, J. F., Howard, S. T. & Baert, F. (1998). Struct. Chem.9, 395–402.
  • Sheldrick, G. M. (1996). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography