PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m856–m857.
Published online 2009 July 1. doi:  10.1107/S1600536809024064
PMCID: PMC2977488

Bis(μ-4-nitro­phthalato)bis­[diaqua­(1,10-phenanthroline)manganese(II)]

Abstract

In the title compound, [Mn2(C8H3NO6)2(C12H8N2)2(H2O)4], the MnII atom in the centrosymmetric binuclear unit has a distorted octa­hedral geometry and is coordinated by a chelating 1,10-phenanthroline ligand, two monodentate carboxyl­ate anions from two 4-nitro­phthalates and two coordinated water mol­ecules. The two MnII ions in the mol­ecule are bridged by two 4-nitro­phthalate anions, both in a bis-monodentate mode, which finally leads to the formation of the binuclear unit. Intra­molecular O—H(...)O hydrogen bonds between the coordinated and uncoordinated O atoms of one monodentate carboxyl­ate group and the corresponding coordinated water mol­ecules result in an eight-membered and two six-membered rings. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the dinuclear mol­ecules into supra­molecular chains propagating parallel to [100].

Related literature

For general background to self-assembly coordination complexes with metal ions and 4-nitro­phthalic acid, see: Guo & Guo (2007 [triangle]); Qi et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m856-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C8H3NO6)2(C12H8N2)2(H2O)4]
  • M r = 960.58
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m856-efi1.jpg
  • a = 7.1601 (9) Å
  • b = 20.039 (3) Å
  • c = 26.592 (3) Å
  • V = 3815.5 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.75 mm−1
  • T = 293 K
  • 0.30 × 0.15 × 0.05 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.890, T max = 0.928
  • 27311 measured reflections
  • 3416 independent reflections
  • 2608 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.107
  • S = 1.05
  • 3416 reflections
  • 305 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97 (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024064/at2807sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024064/at2807Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Science and Technology Foundation of Guizhou Province (No. [2008]2216).

supplementary crystallographic information

Comment

The self-assembly of complexes from phthalic acid ligand and transition metal ions has attracted considerable attention in recent years because these complexes have various intriguing topological structures and potential applications in material chemistry. However, only a few metal-nitrophthalate complexes have been reported to date in contrast with the abundance of metal-phthalate complexes (Guo et al., 2007; Qi et al., 2008). In order to enrich the metal-nitrophthalate complexes, we utilized the 4-nitrophthalic acid to assemble with manganese ions in the presence of ancillary 1,10-phenanthroline ligand and obtained the title binuclear MnII complex [Mn(1,10-phenanthroline)(C8H3NO6)(H2O)2]2.

As depicted in Fig. 1, the title complex exhibits a binuclear structure and in the dimer each MnII ion has a distorted octahedral geometry and was coordinated by a chelating 1,10-phenanthroline, two monodentate carboxylates from two 4-nitrophthalates and two coordinated water molecules. And it is noteworthy that the two MnII ions in the complex are bridged by two 4-nitrophthalates both in a bis-monodentate mode to lead to the formation of a dinuclear unit because of the presence of an inversion center in the crystal structure. Intramolecular O—H···O hydrogen bonds between the coordinated and uncoordinated oxygen atoms of one monodentate carboxylate in a 4-nitrophthalate and corresponding coordinated water molecules result in an eight-membered and two six-membered rings (Table 2). Furthermore, the intermolecular O—H···O hydrogen bonds between two water molecules and another monodentate carboxylate in the same 4-nitrophthalate link the dinuclear molecules into a one-dimensional supramolecular chain, as shown in Fig. 2.

Experimental

Mn(CH3COO)2.4H2O (0.50 mmol, 0.122 g), 4-nitrophthalic acid (0.50 mmol, 0.103 g), 1,10-phenanthroline (0.50 mmol, 0.099 g) and NaOH (1.0 mmol, 0.040 g) were well mixed in 8 ml distilled water, and the solution was stirred for 15 min and then transferred into a 23 ml Teflon-lined bomb at 398 K for 3 days and slowly cooled to room temperature. Light yellow sheet crystals which were suitable for X-ray analysis were obtained.

Refinement

H atoms of water molecules were located in difference Fourier maps and refined isotropically with restraints of O1W—H1A = 0.845 (10), O1W—H1B = 0.846 (10), O2W—H2A = 0.845 (10), O2W—H2B = 0.846 (10) Å and H1A—O1W—H1B = 107 (3) and H2A—O2W—H2B = 112 (4)°. The remaining H atoms of aromatic rings were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title dinuclear complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) –x+1, –y, –z].
Fig. 2.
The one-dimensional supramolecular chain of the title complex. Hydrogen bonds are shown as dashed line. Hydrogen atoms are omitted for clarity.

Crystal data

[Mn2(C8H3NO6)2(C12H8N2)2(H2O)4]F(000) = 1960
Mr = 960.58Dx = 1.672 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4478 reflections
a = 7.1601 (9) Åθ = 2.5–23.3°
b = 20.039 (3) ŵ = 0.75 mm1
c = 26.592 (3) ÅT = 293 K
V = 3815.5 (9) Å3Sheet, yellow
Z = 40.30 × 0.15 × 0.05 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3416 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
graphiteRint = 0.075
[var phi] and ω scansθmax = 25.2°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.890, Tmax = 0.928k = −23→22
27311 measured reflectionsl = −31→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.06P)2 + 0.8459P] where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.39 e Å3
4 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.60706 (5)−0.01188 (2)0.092001 (13)0.02468 (15)
O10.5576 (2)0.07756 (9)0.04921 (6)0.0285 (4)
O30.6721 (3)0.04306 (9)−0.07937 (7)0.0316 (4)
O40.9042 (3)0.06002 (10)−0.02534 (7)0.0373 (5)
O1W0.7016 (3)−0.06823 (10)0.02586 (7)0.0319 (5)
O20.7356 (3)0.15076 (10)0.09074 (7)0.0426 (5)
O2W0.9075 (3)0.01824 (10)0.09875 (7)0.0313 (5)
O50.6617 (3)0.36361 (11)−0.11306 (9)0.0513 (6)
N30.6745 (3)−0.10062 (11)0.14296 (7)0.0280 (5)
N20.5723 (3)0.02382 (11)0.17303 (8)0.0273 (5)
N10.6741 (3)0.30363 (12)−0.11986 (10)0.0405 (6)
C130.6103 (3)−0.02215 (12)0.20908 (9)0.0228 (6)
C20.6986 (3)0.14993 (12)−0.04068 (9)0.0230 (6)
C70.6488 (4)0.13194 (13)0.05290 (9)0.0260 (6)
C120.5995 (3)−0.00806 (14)0.26127 (10)0.0298 (6)
C140.6635 (3)−0.08850 (13)0.19318 (9)0.0258 (6)
C10.6516 (3)0.17594 (13)0.00669 (9)0.0232 (6)
C50.6125 (4)0.28622 (14)−0.02963 (10)0.0298 (6)
H50.58390.3313−0.02630.036*
C30.7018 (4)0.19241 (14)−0.08173 (9)0.0285 (6)
H30.73120.1758−0.11340.034*
C60.6077 (3)0.24341 (13)0.01140 (10)0.0267 (6)
H60.57440.26020.04280.032*
C110.5484 (4)0.05711 (15)0.27502 (10)0.0347 (7)
H110.54000.06880.30880.042*
C150.7010 (4)−0.13834 (14)0.22946 (10)0.0306 (6)
C80.7626 (4)0.07836 (12)−0.04821 (9)0.0244 (6)
C100.5110 (4)0.10331 (15)0.23861 (11)0.0373 (7)
H100.47720.14660.24740.045*
C90.5241 (4)0.08472 (13)0.18791 (10)0.0327 (6)
H90.49790.11660.16350.039*
C40.6617 (4)0.25922 (13)−0.07580 (10)0.0285 (6)
C190.6417 (4)−0.05922 (16)0.29694 (10)0.0370 (7)
H190.6359−0.04970.33110.044*
C170.7581 (4)−0.21389 (15)0.16140 (11)0.0428 (7)
H170.7888−0.25610.14940.051*
C200.6903 (4)−0.12145 (16)0.28170 (10)0.0376 (7)
H200.7171−0.15380.30570.045*
C180.7211 (4)−0.16194 (14)0.12807 (11)0.0362 (7)
H180.7293−0.17040.09380.043*
C160.7488 (4)−0.20209 (14)0.21190 (11)0.0407 (7)
H160.7740−0.23620.23460.049*
O60.6997 (5)0.27861 (13)−0.16128 (8)0.0716 (8)
H2A0.918 (5)0.0602 (6)0.0986 (13)0.061 (12)*
H2B0.976 (5)−0.0003 (17)0.0769 (11)0.067 (12)*
H1A0.632 (4)−0.0697 (19)0.0003 (9)0.073 (13)*
H1B0.809 (2)−0.0579 (18)0.0155 (13)0.066 (12)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0297 (2)0.0251 (3)0.0193 (2)0.00034 (16)−0.00131 (15)0.00056 (15)
O10.0308 (10)0.0279 (11)0.0269 (10)−0.0050 (8)−0.0032 (7)0.0050 (8)
O30.0317 (10)0.0265 (11)0.0365 (11)−0.0016 (8)0.0007 (8)−0.0079 (8)
O40.0309 (11)0.0372 (12)0.0438 (12)0.0112 (9)−0.0071 (9)−0.0026 (9)
O1W0.0303 (12)0.0402 (13)0.0252 (11)−0.0035 (9)−0.0001 (9)−0.0074 (9)
O20.0658 (15)0.0358 (12)0.0261 (11)−0.0102 (11)−0.0095 (10)−0.0010 (8)
O2W0.0310 (11)0.0314 (13)0.0315 (11)0.0004 (9)−0.0026 (8)−0.0031 (9)
O50.0666 (15)0.0287 (13)0.0587 (14)0.0087 (10)0.0136 (12)0.0166 (10)
N30.0328 (12)0.0301 (13)0.0212 (11)0.0041 (10)−0.0001 (9)−0.0022 (9)
N20.0275 (12)0.0294 (13)0.0249 (12)−0.0005 (9)0.0007 (9)−0.0004 (9)
N10.0475 (15)0.0311 (16)0.0430 (16)0.0012 (11)0.0003 (12)0.0127 (12)
C130.0201 (13)0.0266 (15)0.0218 (13)−0.0017 (10)−0.0003 (10)−0.0020 (10)
C20.0237 (13)0.0208 (14)0.0244 (13)−0.0009 (10)−0.0021 (10)0.0007 (10)
C70.0301 (14)0.0263 (15)0.0217 (14)0.0033 (12)0.0033 (11)−0.0010 (11)
C120.0223 (13)0.0428 (18)0.0243 (15)−0.0040 (12)−0.0010 (10)−0.0012 (12)
C140.0230 (13)0.0309 (15)0.0234 (14)−0.0026 (11)0.0001 (10)0.0010 (11)
C10.0218 (13)0.0250 (15)0.0228 (13)−0.0013 (10)−0.0005 (10)0.0002 (10)
C50.0283 (14)0.0224 (15)0.0387 (16)0.0000 (11)0.0004 (11)−0.0009 (12)
C30.0345 (15)0.0292 (16)0.0217 (13)−0.0008 (12)0.0010 (11)0.0013 (11)
C60.0264 (13)0.0265 (15)0.0272 (14)−0.0007 (11)0.0013 (10)−0.0040 (11)
C110.0338 (15)0.0428 (18)0.0276 (15)−0.0040 (13)0.0030 (12)−0.0110 (13)
C150.0271 (14)0.0355 (17)0.0293 (15)−0.0032 (12)−0.0035 (11)0.0072 (12)
C80.0240 (13)0.0251 (14)0.0241 (13)−0.0002 (11)0.0057 (11)−0.0008 (11)
C100.0364 (16)0.0346 (17)0.0409 (17)−0.0008 (13)0.0060 (13)−0.0146 (13)
C90.0318 (15)0.0289 (16)0.0373 (16)0.0021 (12)0.0014 (12)−0.0007 (12)
C40.0324 (14)0.0262 (16)0.0270 (14)0.0013 (11)−0.0024 (11)0.0056 (11)
C190.0377 (17)0.053 (2)0.0202 (14)−0.0070 (14)0.0001 (11)0.0009 (13)
C170.0522 (19)0.0273 (16)0.0489 (19)0.0080 (14)−0.0047 (14)−0.0019 (14)
C200.0400 (17)0.048 (2)0.0249 (15)−0.0035 (14)−0.0047 (12)0.0123 (13)
C180.0451 (17)0.0308 (17)0.0325 (16)0.0062 (13)−0.0013 (12)−0.0073 (12)
C160.0436 (17)0.0333 (18)0.0452 (18)0.0032 (14)−0.0067 (14)0.0111 (14)
O60.137 (3)0.0484 (15)0.0296 (13)−0.0022 (16)0.0067 (13)0.0073 (11)

Geometric parameters (Å, °)

Mn1—O3i2.1212 (19)C7—C11.513 (3)
Mn1—O12.1524 (18)C12—C111.405 (4)
Mn1—O1W2.1969 (19)C12—C191.429 (4)
Mn1—O2W2.2413 (19)C14—C151.414 (4)
Mn1—N22.284 (2)C1—C61.394 (4)
Mn1—N32.287 (2)C5—C41.387 (4)
O1—C71.274 (3)C5—C61.388 (4)
O3—C81.267 (3)C5—H50.9300
O3—Mn1i2.1212 (19)C3—C41.378 (4)
O4—C81.238 (3)C3—H30.9300
O1W—H1A0.845 (10)C6—H60.9300
O1W—H1B0.845 (10)C11—C101.366 (4)
O2—C71.241 (3)C11—H110.9300
O2W—H2A0.845 (10)C15—C161.402 (4)
O2W—H2B0.845 (10)C15—C201.432 (4)
O5—N11.219 (3)C10—C91.402 (4)
N3—C181.333 (3)C10—H100.9300
N3—C141.360 (3)C9—H90.9300
N2—C91.329 (3)C19—C201.356 (4)
N2—C131.357 (3)C19—H190.9300
N1—O61.224 (3)C17—C161.365 (4)
N1—C41.474 (3)C17—C181.393 (4)
C13—C121.418 (4)C17—H170.9300
C13—C141.446 (4)C20—H200.9300
C2—C31.385 (4)C18—H180.9300
C2—C11.404 (3)C16—H160.9300
C2—C81.519 (3)
O3i—Mn1—O190.38 (7)C15—C14—C13120.0 (2)
O3i—Mn1—O1W90.70 (7)C6—C1—C2119.7 (2)
O1—Mn1—O1W93.18 (7)C6—C1—C7119.3 (2)
O3i—Mn1—O2W175.18 (7)C2—C1—C7121.0 (2)
O1—Mn1—O2W88.61 (7)C4—C5—C6117.4 (3)
O1W—Mn1—O2W84.66 (7)C4—C5—H5121.3
O3i—Mn1—N297.98 (7)C6—C5—H5121.3
O1—Mn1—N2102.71 (7)C4—C3—C2120.2 (2)
O1W—Mn1—N2161.78 (8)C4—C3—H3119.9
O2W—Mn1—N286.83 (7)C2—C3—H3119.9
O3i—Mn1—N393.66 (8)C5—C6—C1121.5 (2)
O1—Mn1—N3174.46 (7)C5—C6—H6119.2
O1W—Mn1—N390.56 (7)C1—C6—H6119.2
O2W—Mn1—N387.67 (8)C10—C11—C12119.8 (3)
N2—Mn1—N373.00 (7)C10—C11—H11120.1
C7—O1—Mn1125.97 (16)C12—C11—H11120.1
C8—O3—Mn1i138.54 (16)C16—C15—C14117.5 (2)
Mn1—O1W—H1A119 (3)C16—C15—C20123.5 (3)
Mn1—O1W—H1B115 (3)C14—C15—C20119.0 (3)
H1A—O1W—H1B107 (3)O4—C8—O3125.0 (2)
Mn1—O2W—H2A111 (3)O4—C8—C2117.5 (2)
Mn1—O2W—H2B113 (3)O3—C8—C2117.3 (2)
H2A—O2W—H2B112 (4)C11—C10—C9119.2 (3)
C18—N3—C14118.1 (2)C11—C10—H10120.4
C18—N3—Mn1126.39 (17)C9—C10—H10120.4
C14—N3—Mn1115.52 (17)N2—C9—C10123.2 (3)
C9—N2—C13117.7 (2)N2—C9—H9118.4
C9—N2—Mn1126.66 (18)C10—C9—H9118.4
C13—N2—Mn1115.60 (16)C3—C4—C5122.2 (2)
O5—N1—O6123.3 (2)C3—C4—N1118.9 (2)
O5—N1—C4118.2 (2)C5—C4—N1118.9 (2)
O6—N1—C4118.5 (2)C20—C19—C12121.0 (3)
N2—C13—C12123.0 (2)C20—C19—H19119.5
N2—C13—C14118.0 (2)C12—C19—H19119.5
C12—C13—C14118.9 (2)C16—C17—C18119.2 (3)
C3—C2—C1118.9 (2)C16—C17—H17120.4
C3—C2—C8118.1 (2)C18—C17—H17120.4
C1—C2—C8122.8 (2)C19—C20—C15121.4 (3)
O2—C7—O1125.4 (2)C19—C20—H20119.3
O2—C7—C1118.4 (2)C15—C20—H20119.3
O1—C7—C1116.3 (2)N3—C18—C17123.2 (3)
C11—C12—C13117.0 (2)N3—C18—H18118.4
C11—C12—C19123.3 (3)C17—C18—H18118.4
C13—C12—C19119.7 (3)C17—C16—C15119.8 (3)
N3—C14—C15122.2 (2)C17—C16—H16120.1
N3—C14—C13117.8 (2)C15—C16—H16120.1
O3i—Mn1—O1—C7156.7 (2)C8—C2—C1—C7−4.5 (4)
O1W—Mn1—O1—C7−112.6 (2)O2—C7—C1—C6−50.6 (3)
O2W—Mn1—O1—C7−28.0 (2)O1—C7—C1—C6130.2 (2)
N2—Mn1—O1—C758.4 (2)O2—C7—C1—C2129.1 (3)
N3—Mn1—O1—C719.8 (9)O1—C7—C1—C2−50.2 (3)
O3i—Mn1—N3—C1881.4 (2)C1—C2—C3—C40.8 (4)
O1—Mn1—N3—C18−141.8 (7)C8—C2—C3—C4−174.0 (2)
O1W—Mn1—N3—C18−9.4 (2)C4—C5—C6—C10.4 (4)
O2W—Mn1—N3—C18−94.0 (2)C2—C1—C6—C5−1.2 (4)
N2—Mn1—N3—C18178.6 (2)C7—C1—C6—C5178.4 (2)
O3i—Mn1—N3—C14−98.02 (18)C13—C12—C11—C100.3 (4)
O1—Mn1—N3—C1438.8 (9)C19—C12—C11—C10179.7 (3)
O1W—Mn1—N3—C14171.24 (18)N3—C14—C15—C16−0.8 (4)
O2W—Mn1—N3—C1486.61 (18)C13—C14—C15—C16178.9 (2)
N2—Mn1—N3—C14−0.79 (17)N3—C14—C15—C20178.7 (2)
O3i—Mn1—N2—C9−89.3 (2)C13—C14—C15—C20−1.6 (4)
O1—Mn1—N2—C92.9 (2)Mn1i—O3—C8—O4127.8 (2)
O1W—Mn1—N2—C9153.0 (2)Mn1i—O3—C8—C2−55.9 (3)
O2W—Mn1—N2—C990.8 (2)C3—C2—C8—O4115.6 (3)
N3—Mn1—N2—C9179.3 (2)C1—C2—C8—O4−59.0 (3)
O3i—Mn1—N2—C1392.61 (17)C3—C2—C8—O3−61.0 (3)
O1—Mn1—N2—C13−175.18 (16)C1—C2—C8—O3124.5 (3)
O1W—Mn1—N2—C13−25.1 (3)C12—C11—C10—C90.1 (4)
O2W—Mn1—N2—C13−87.32 (17)C13—N2—C9—C100.0 (4)
N3—Mn1—N2—C131.20 (16)Mn1—N2—C9—C10−178.07 (19)
C9—N2—C13—C120.4 (3)C11—C10—C9—N2−0.2 (4)
Mn1—N2—C13—C12178.70 (17)C2—C3—C4—C5−1.7 (4)
C9—N2—C13—C14−179.8 (2)C2—C3—C4—N1177.5 (2)
Mn1—N2—C13—C14−1.5 (3)C6—C5—C4—C31.0 (4)
Mn1—O1—C7—O2−25.1 (4)C6—C5—C4—N1−178.1 (2)
Mn1—O1—C7—C1154.09 (16)O5—N1—C4—C3−170.9 (3)
N2—C13—C12—C11−0.6 (4)O6—N1—C4—C37.8 (4)
C14—C13—C12—C11179.6 (2)O5—N1—C4—C58.3 (4)
N2—C13—C12—C19−180.0 (2)O6—N1—C4—C5−173.0 (3)
C14—C13—C12—C190.2 (3)C11—C12—C19—C20179.9 (3)
C18—N3—C14—C150.5 (4)C13—C12—C19—C20−0.7 (4)
Mn1—N3—C14—C15179.98 (19)C12—C19—C20—C150.0 (4)
C18—N3—C14—C13−179.1 (2)C16—C15—C20—C19−179.4 (3)
Mn1—N3—C14—C130.3 (3)C14—C15—C20—C191.2 (4)
N2—C13—C14—N30.8 (3)C14—N3—C18—C170.2 (4)
C12—C13—C14—N3−179.4 (2)Mn1—N3—C18—C17−179.2 (2)
N2—C13—C14—C15−178.9 (2)C16—C17—C18—N3−0.7 (5)
C12—C13—C14—C150.9 (3)C18—C17—C16—C150.5 (4)
C3—C2—C1—C60.6 (3)C14—C15—C16—C170.2 (4)
C8—C2—C1—C6175.1 (2)C20—C15—C16—C17−179.2 (3)
C3—C2—C1—C7−179.0 (2)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2A···O20.85 (1)2.25 (3)2.935 (3)139 (3)
O2W—H2B···O4ii0.85 (1)2.01 (1)2.844 (3)167 (4)
O1W—H1A···O1i0.85 (1)1.90 (1)2.732 (2)170 (4)
O1W—H1B···O4ii0.85 (1)2.07 (2)2.827 (3)149 (3)

Symmetry codes: (ii) −x+2, −y, −z; (i) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2807).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guo, M.-L. & Guo, C.-H. (2007). Acta Cryst. C63, m595–m597. [PubMed]
  • Qi, Y., Che, Y., Luo, F., Batten, S. R., Liu, Y. & Zheng, J. (2008). Cryst. Growth Des 8, 1654–1662.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography