PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1981.
Published online 2009 July 25. doi:  10.1107/S1600536809027822
PMCID: PMC2977485

N-[(E)-Quinoxalin-2-ylmethyl­idene]-1H-indazol-5-amine

Abstract

In the title mol­ecule, C16H11N5, the mean planes of the quinoxaline and indazole fragments form a dihedral angle of 10.62 (5)°. In the crystal, weak inter­molecular N—H(...)N hydrogen bonds link the mol­ecules into zigzag chains extending in the [001] direction. The crystal packing also exhibits π–π inter­actions [centroid–centroid distances of 3.7080 (2) and 3.8220 (5) Å], which form stacks of the mol­ecules parallel to the a axis.

Related literature

For related structures, see: Varghese et al. (2009 [triangle]); Varsha et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1981-scheme1.jpg

Experimental

Crystal data

  • C16H11N5
  • M r = 273.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1981-efi1.jpg
  • a = 7.7015 (6) Å
  • b = 8.0330 (6) Å
  • c = 20.6034 (16) Å
  • β = 96.882 (2)°
  • V = 1265.47 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.45 × 0.27 × 0.08 mm

Data collection

  • Bruker Kappa APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.960, T max = 0.993
  • 16012 measured reflections
  • 3597 independent reflections
  • 2502 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.143
  • S = 1.03
  • 3597 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global, schiflm. DOI: 10.1107/S1600536809027822/cv2578sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027822/cv2578Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray data were collected on the diffractometer facilities at the Indian Institute of Technology, Madras, provided by the Department of Science and Technology. MS thanks the Kerala State Council for Science, Technology and the Environment, Trivandrum, Kerala, for support. DV acknowledges the Council of Scientific and Industrial Research (CSIR), India, for financial assistance.

supplementary crystallographic information

Comment

In view of synthesizing new quinoxaline based Schiff bases, we have undertaken the synthesis of the title compound, (1), and report here its crystal structure. In (1), the quinoxaline ring and indazole ring are each approximately planar, with the maximum deviations of 0.0254 (4) and 0.0213 (4) Å from the least square planes, respectively. A perspective drawing is depicted in figure 1 with the atomic numbering scheme. The compound is non-planar due to the twisting of rings with respect to azomethine group. Bond lengths and angles are in normal ranges and comparable to those in related structures (Varghese et al., 2009; Varsha et al., 2009). In the crystal structure, molecules are held together by π–π stacking interactions and N—H···N intermolecular hydrogen bonding.

Experimental

A hot solution of 5-aminoindazole (1 mmol) in ethanol (20 ml) was added slowly to a hot solution of quinoxaline-2-carboxaldehyde (1 mmol) in the same solvent (40 ml).The resulting mixture on cooling yielded the crude product of (1). Pale green crystals suitable for single-crystal XRD are obtained by slow evaporation of ethanolic solution of (1).

Refinement

H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93 Å) and refined in riding mode, with Uiso (H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C16H11N5F(000) = 568
Mr = 273.30Dx = 1.434 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2502 reflections
a = 7.7015 (6) Åθ = 2.6–29.8°
b = 8.0330 (6) ŵ = 0.09 mm1
c = 20.6034 (16) ÅT = 298 K
β = 96.882 (2)°Plate, green
V = 1265.47 (17) Å30.45 × 0.27 × 0.08 mm
Z = 4

Data collection

Bruker Kappa APEX CCD diffractometer3597 independent reflections
Radiation source: fine-focus sealed tube2502 reflections with I > 2σ(I)
graphiteRint = 0.024
ω and [var phi] scansθmax = 29.8°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −10→10
Tmin = 0.960, Tmax = 0.993k = −11→10
16012 measured reflectionsl = −28→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0715P)2 + 0.2171P] where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max = 0.003
190 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.25032 (15)0.66502 (15)0.33833 (5)0.0436 (3)
N20.14194 (13)0.77204 (14)0.45776 (5)0.0392 (3)
N30.30313 (15)0.37642 (14)0.50779 (5)0.0413 (3)
N40.38605 (15)−0.08636 (16)0.70573 (5)0.0454 (3)
H40.3774−0.08510.74700.054*
N50.42455 (17)−0.22452 (16)0.67229 (6)0.0515 (3)
C10.18211 (15)0.82051 (17)0.34459 (6)0.0368 (3)
C20.16182 (18)0.9289 (2)0.29041 (6)0.0469 (3)
H20.19800.89600.25090.056*
C30.08916 (19)1.0817 (2)0.29612 (7)0.0507 (4)
H30.07241.15110.25980.061*
C40.03910 (19)1.1364 (2)0.35576 (7)0.0490 (4)
H4A−0.00731.24260.35890.059*
C50.05790 (18)1.03530 (18)0.40912 (7)0.0440 (3)
H50.02471.07240.44860.053*
C60.12780 (16)0.87452 (17)0.40443 (6)0.0361 (3)
C70.26273 (18)0.57069 (18)0.39027 (6)0.0436 (3)
H70.30880.46420.38770.052*
C80.20879 (16)0.62367 (16)0.45062 (6)0.0374 (3)
C90.22517 (17)0.51440 (18)0.50816 (6)0.0411 (3)
H90.17730.54750.54550.049*
C100.32246 (16)0.27137 (17)0.56339 (6)0.0369 (3)
C110.36804 (16)0.10932 (16)0.55175 (6)0.0375 (3)
H110.38480.07560.50980.045*
C120.38887 (16)−0.00418 (17)0.60359 (6)0.0360 (3)
C130.36273 (15)0.04951 (17)0.66654 (6)0.0365 (3)
C140.42856 (19)−0.17552 (18)0.61149 (6)0.0460 (3)
H140.4543−0.24510.57780.055*
C150.32249 (17)0.21454 (18)0.67939 (6)0.0421 (3)
H150.30960.24960.72160.051*
C160.30258 (18)0.32333 (18)0.62789 (6)0.0427 (3)
H160.27540.43390.63540.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0514 (6)0.0477 (7)0.0324 (5)0.0016 (5)0.0079 (4)−0.0037 (5)
N20.0438 (6)0.0433 (6)0.0313 (5)0.0018 (5)0.0081 (4)0.0014 (4)
N30.0508 (6)0.0404 (6)0.0333 (5)−0.0004 (5)0.0073 (4)0.0023 (4)
N40.0577 (7)0.0510 (7)0.0279 (5)−0.0001 (5)0.0070 (5)0.0050 (5)
N50.0698 (8)0.0469 (7)0.0377 (6)0.0017 (6)0.0070 (5)0.0050 (5)
C10.0357 (6)0.0445 (7)0.0304 (6)−0.0040 (5)0.0046 (4)−0.0005 (5)
C20.0492 (7)0.0593 (9)0.0333 (6)−0.0023 (7)0.0096 (5)0.0060 (6)
C30.0494 (8)0.0581 (9)0.0453 (8)−0.0007 (7)0.0087 (6)0.0184 (7)
C40.0473 (7)0.0466 (8)0.0536 (8)0.0046 (6)0.0085 (6)0.0093 (7)
C50.0465 (7)0.0465 (8)0.0398 (7)0.0042 (6)0.0087 (5)0.0011 (6)
C60.0355 (6)0.0423 (7)0.0307 (6)−0.0030 (5)0.0046 (4)0.0000 (5)
C70.0530 (8)0.0435 (8)0.0347 (6)0.0041 (6)0.0065 (5)−0.0026 (5)
C80.0401 (6)0.0402 (7)0.0322 (6)−0.0015 (5)0.0061 (5)0.0006 (5)
C90.0452 (7)0.0452 (8)0.0338 (6)0.0000 (6)0.0087 (5)0.0022 (5)
C100.0417 (6)0.0405 (7)0.0291 (6)−0.0015 (5)0.0071 (5)0.0001 (5)
C110.0440 (6)0.0435 (7)0.0264 (5)0.0002 (5)0.0098 (5)−0.0015 (5)
C120.0395 (6)0.0406 (7)0.0286 (6)−0.0015 (5)0.0067 (4)−0.0007 (5)
C130.0367 (6)0.0468 (8)0.0264 (5)−0.0026 (5)0.0054 (4)0.0012 (5)
C140.0604 (8)0.0425 (8)0.0356 (7)0.0029 (6)0.0075 (6)0.0008 (6)
C150.0489 (7)0.0516 (8)0.0265 (6)0.0014 (6)0.0074 (5)−0.0063 (5)
C160.0531 (7)0.0420 (7)0.0334 (6)0.0038 (6)0.0062 (5)−0.0063 (5)

Geometric parameters (Å, °)

N1—C71.3053 (17)C5—C61.4070 (19)
N1—C11.3670 (17)C5—H50.9300
N2—C81.3136 (17)C7—C81.4225 (17)
N2—C61.3668 (16)C7—H70.9300
N3—C91.2610 (18)C8—C91.4684 (17)
N3—C101.4162 (16)C9—H90.9300
N4—C131.3568 (17)C10—C111.3768 (18)
N4—N51.3576 (17)C10—C161.4185 (17)
N4—H40.8600C11—C121.3989 (17)
N5—C141.3169 (17)C11—H110.9300
C1—C21.4094 (18)C12—C131.4039 (16)
C1—C61.4167 (17)C12—C141.4150 (19)
C2—C31.360 (2)C13—C151.3941 (19)
C2—H20.9300C14—H140.9300
C3—C41.402 (2)C15—C161.3691 (18)
C3—H30.9300C15—H150.9300
C4—C51.3605 (19)C16—H160.9300
C4—H4A0.9300
Cg1···Cg3i3.7080 (2)Cg2···Cg3ii3.8220 (5)
C7—N1—C1116.38 (11)N2—C8—C7121.92 (12)
C8—N2—C6116.81 (10)N2—C8—C9116.67 (11)
C9—N3—C10121.52 (11)C7—C8—C9121.40 (12)
C13—N4—N5112.15 (10)N3—C9—C8121.03 (12)
C13—N4—H4123.9N3—C9—H9119.5
N5—N4—H4123.9C8—C9—H9119.5
C14—N5—N4105.65 (12)C11—C10—N3115.26 (11)
N1—C1—C2119.81 (11)C11—C10—C16119.99 (12)
N1—C1—C6121.24 (11)N3—C10—C16124.73 (12)
C2—C1—C6118.94 (12)C10—C11—C12119.44 (11)
C3—C2—C1119.78 (13)C10—C11—H11120.3
C3—C2—H2120.1C12—C11—H11120.3
C1—C2—H2120.1C11—C12—C13119.28 (12)
C2—C3—C4121.20 (13)C11—C12—C14136.49 (12)
C2—C3—H3119.4C13—C12—C14104.21 (11)
C4—C3—H3119.4N4—C13—C15131.95 (11)
C5—C4—C3120.49 (14)N4—C13—C12106.21 (12)
C5—C4—H4A119.8C15—C13—C12121.83 (12)
C3—C4—H4A119.8N5—C14—C12111.77 (12)
C4—C5—C6119.80 (13)N5—C14—H14124.1
C4—C5—H5120.1C12—C14—H14124.1
C6—C5—H5120.1C16—C15—C13117.81 (11)
N2—C6—C5119.47 (11)C16—C15—H15121.1
N2—C6—C1120.78 (12)C13—C15—H15121.1
C5—C6—C1119.75 (12)C15—C16—C10121.58 (13)
N1—C7—C8122.85 (13)C15—C16—H16119.2
N1—C7—H7118.6C10—C16—H16119.2
C8—C7—H7118.6

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+2, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···N1iii0.862.313.1050 (15)153

Symmetry codes: (iii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2578).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Varghese, D., Arun, V., Sebastian, M., Leeju, P., Varsha, G. & Yusuff, K. K. M. (2009). Acta Cryst. E65, o435. [PMC free article] [PubMed]
  • Varsha, G., Arun, V., Sebastian, M., Leeju, P., Varghese, D. & Yusuff, K. K. M. (2009). Acta Cryst. E65, o919. [PMC free article] [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography