PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m951.
Published online 2009 July 18. doi:  10.1107/S1600536809027196
PMCID: PMC2977479

1,1′-{[1,1′-(Pyridinium-2,6-di­yl)diethyl­idyne]diimino}diguanidinium penta­chloridocadmate(II) monohydrate

Abstract

In the title organic–inorganic hybrid salt, (C11H20N9)[CdCl5]·H2O, the crystal structure is stabilized by intermolecular hydrogen bonds between the organic cation, the complex inorganic anion and the uncoordinated water molecule, forming a three-dimensional network.

Related literature

For details of the synthesis, see: Valdes-Martinez et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m951-scheme1.jpg

Experimental

Crystal data

  • (C11H20N9)[CdCl5]·H2O
  • M r = 586.03
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m951-efi1.jpg
  • a = 10.638 (2) Å
  • b = 13.700 (3) Å
  • c = 14.839 (3) Å
  • β = 90.90 (3)°
  • V = 2162.3 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.65 mm−1
  • T = 298 K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.681, T max = 0.745
  • 22228 measured reflections
  • 4947 independent reflections
  • 4155 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.068
  • S = 1.10
  • 4947 reflections
  • 246 parameters
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027196/dn2466sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027196/dn2466Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The asymmetric unit of the title compound (Fig 1) consists of pentachlorocadmium, a water molecule and H3L, the latter resulting from protonation of the pyridyl nitrogen and the two guanyl N atoms. There are four intramolecular hydrogen bonds in the compound, i.e., N4—H4···Cl5, N5—H5A···Cl1, N8—H8B···O1W and O1W—H1WB···Cl4 (table 1). The angle between the pyridine ring and the aminoguanidone moieties, N2—N3—C11—N4—N5 and N6—N7—C10—N8—N9, are 26.23 (2)° and 31.13 (1)° respectively. Additionally, there are also numerous hydrogen bonds among the terminal nitrogen atoms of the trication H3L, the oxygen atom of the water molecule and the chloride atoms of pentachlorocadmium anion, leading to a complex three-dimensional network.

Experimental

The ligand L was prepared according to reported method (Valdes-Martinez et al. 2002). The title compound was prepared by refluxing an 30 ml EtOH–HCl mixture solution (v:v = 3:1) containing an equimolar amount of L (1.096 g, 4 mmol) and CdCl2 for 1 h. The resulting solution was filtered and stood still until crystals formed.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(Caromatic or N) and Uiso(H) = 1.5Ueq(Cmethyl). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of structure refinement, they were treated as riding on their parent O atom.

Figures

Fig. 1.
Molecular structure of the title compound,with the atom labeling sche me. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bonds are shown as dashed lines.

Crystal data

(C11H20N9)[CdCl5]·H2OF(000) = 1168
Mr = 586.03Dx = 1.800 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 19919 reflections
a = 10.638 (2) Åθ = 3.1–27.6°
b = 13.700 (3) ŵ = 1.65 mm1
c = 14.839 (3) ÅT = 298 K
β = 90.90 (3)°Prism, colourless
V = 2162.3 (8) Å30.25 × 0.20 × 0.18 mm
Z = 4

Data collection

Rigaku Mercury2 (2× 2 bin mode) diffractometer4947 independent reflections
Radiation source: fine-focus sealed tube4155 reflections with I > 2σ(I)
graphiteRint = 0.043
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = −13→13
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −17→17
Tmin = 0.681, Tmax = 0.745l = −19→19
22228 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0222P)2 + 1.3165P] where P = (Fo2 + 2Fc2)/3
4947 reflections(Δ/σ)max = 0.032
246 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.91113 (2)0.240737 (14)0.143910 (13)0.03119 (7)
Cl10.88183 (8)0.41966 (5)0.11166 (5)0.04173 (18)
Cl20.68199 (7)0.21144 (5)0.06726 (5)0.03978 (18)
Cl31.02297 (8)0.14273 (6)0.03080 (5)0.0464 (2)
Cl40.82906 (7)0.15219 (6)0.28367 (5)0.04094 (18)
Cl51.11659 (7)0.27884 (6)0.23687 (5)0.04219 (19)
N10.89827 (19)0.31005 (15)0.68390 (14)0.0238 (5)
H10.89380.28620.63040.029*
N20.8635 (2)0.43124 (15)0.54498 (14)0.0252 (5)
N30.8349 (2)0.48151 (16)0.46731 (14)0.0302 (5)
H30.78420.53040.46720.036*
N40.9582 (3)0.37103 (17)0.39331 (16)0.0428 (6)
H4A0.99390.35080.34520.051*
H4B0.96730.33900.44280.051*
N50.8730 (2)0.50235 (18)0.31717 (15)0.0354 (6)
H5A0.90730.48420.26780.042*
H5B0.82760.55430.31820.042*
N60.9327 (2)0.11265 (15)0.66384 (14)0.0275 (5)
N70.9631 (2)0.01760 (16)0.64548 (15)0.0334 (5)
H71.0230−0.01130.67450.040*
N80.8182 (2)0.01826 (18)0.52850 (16)0.0396 (6)
H8A0.7755−0.01190.48750.048*
H8B0.80940.08020.53530.048*
N90.9142 (3)−0.12433 (18)0.57366 (18)0.0488 (7)
H9A0.8735−0.15740.53360.059*
H9B0.9668−0.15310.60940.059*
C10.9503 (2)0.25487 (18)0.74947 (17)0.0248 (5)
C20.9574 (3)0.2929 (2)0.83576 (18)0.0325 (6)
H20.99430.25680.88220.039*
C30.9094 (3)0.3846 (2)0.85289 (18)0.0356 (7)
H3A0.91250.40960.91120.043*
C40.8568 (3)0.4394 (2)0.78360 (17)0.0306 (6)
H40.82460.50130.79490.037*
C50.8526 (2)0.40094 (18)0.69727 (17)0.0234 (5)
C60.8104 (2)0.45750 (18)0.61734 (17)0.0252 (6)
C70.7170 (3)0.5381 (2)0.62813 (19)0.0353 (7)
H7A0.76000.59680.64600.053*
H7B0.65770.52040.67340.053*
H7C0.67330.54880.57190.053*
C80.9938 (2)0.15541 (18)0.72746 (17)0.0243 (5)
C91.1001 (3)0.1131 (2)0.7819 (2)0.0387 (7)
H9C1.06740.07010.82690.058*
H9D1.14640.16490.81070.058*
H9E1.15470.07730.74300.058*
C100.8962 (3)−0.0298 (2)0.58035 (18)0.0315 (6)
C110.8901 (3)0.4506 (2)0.39114 (18)0.0296 (6)
O1W0.7726 (3)0.22202 (18)0.5047 (2)0.0695 (8)
H1WA0.71560.23290.54270.104*
H1WB0.74480.22120.45110.104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.03641 (12)0.02847 (12)0.02866 (11)0.00307 (9)−0.00053 (8)−0.00175 (8)
Cl10.0584 (5)0.0293 (4)0.0371 (4)0.0015 (3)−0.0135 (3)−0.0001 (3)
Cl20.0407 (4)0.0323 (4)0.0460 (4)−0.0014 (3)−0.0088 (3)0.0055 (3)
Cl30.0526 (5)0.0486 (5)0.0379 (4)0.0167 (4)−0.0043 (4)−0.0125 (3)
Cl40.0444 (4)0.0433 (4)0.0351 (4)−0.0054 (3)−0.0023 (3)0.0066 (3)
Cl50.0293 (4)0.0566 (5)0.0405 (4)0.0036 (3)−0.0015 (3)−0.0156 (3)
N10.0263 (12)0.0259 (11)0.0192 (10)−0.0011 (9)0.0021 (9)−0.0031 (8)
N20.0288 (12)0.0231 (11)0.0236 (11)0.0011 (9)0.0001 (9)0.0007 (9)
N30.0350 (13)0.0292 (12)0.0264 (12)0.0093 (10)0.0007 (10)0.0007 (9)
N40.0649 (18)0.0338 (14)0.0300 (13)0.0124 (13)0.0137 (12)−0.0029 (10)
N50.0345 (14)0.0473 (15)0.0243 (12)0.0015 (11)0.0008 (10)0.0007 (10)
N60.0329 (13)0.0228 (11)0.0269 (12)0.0018 (9)0.0009 (10)−0.0020 (9)
N70.0373 (14)0.0295 (12)0.0332 (13)0.0073 (10)−0.0095 (11)−0.0055 (10)
N80.0488 (16)0.0329 (13)0.0366 (14)−0.0056 (12)−0.0141 (12)−0.0023 (11)
N90.0656 (19)0.0311 (14)0.0492 (16)0.0037 (13)−0.0145 (14)−0.0112 (12)
C10.0216 (13)0.0262 (13)0.0265 (13)−0.0032 (10)0.0022 (10)0.0007 (10)
C20.0357 (16)0.0355 (15)0.0263 (14)−0.0001 (13)−0.0041 (12)0.0013 (12)
C30.0441 (18)0.0384 (17)0.0244 (14)−0.0012 (13)0.0018 (13)−0.0063 (12)
C40.0327 (15)0.0305 (15)0.0288 (14)0.0007 (12)0.0063 (12)−0.0044 (11)
C50.0201 (13)0.0252 (13)0.0250 (13)−0.0026 (10)0.0057 (10)−0.0025 (10)
C60.0221 (13)0.0263 (14)0.0272 (14)0.0003 (10)0.0028 (11)−0.0020 (10)
C70.0339 (16)0.0368 (16)0.0350 (16)0.0122 (13)−0.0005 (13)−0.0068 (12)
C80.0237 (13)0.0265 (14)0.0228 (13)−0.0003 (10)0.0021 (11)0.0014 (10)
C90.0335 (17)0.0387 (17)0.0436 (17)0.0074 (13)−0.0108 (14)−0.0069 (13)
C100.0363 (16)0.0318 (15)0.0265 (14)−0.0038 (12)0.0028 (12)−0.0032 (11)
C110.0303 (15)0.0324 (15)0.0260 (14)−0.0064 (12)−0.0016 (11)−0.0056 (11)
O1W0.0682 (18)0.0488 (15)0.091 (2)0.0023 (13)−0.0178 (16)0.0015 (14)

Geometric parameters (Å, °)

Cd1—Cl32.4695 (9)N8—H8B0.8600
Cd1—Cl12.5160 (9)N9—C101.313 (4)
Cd1—Cl42.5675 (9)N9—H9A0.8600
Cd1—Cl52.6188 (10)N9—H9B0.8600
Cd1—Cl22.7036 (10)C1—C21.383 (4)
N1—C11.344 (3)C1—C81.477 (3)
N1—C51.352 (3)C2—C31.381 (4)
N1—H10.8600C2—H20.9300
N2—C61.273 (3)C3—C41.385 (4)
N2—N31.373 (3)C3—H3A0.9300
N3—C111.350 (3)C4—C51.385 (3)
N3—H30.8600C4—H40.9300
N4—C111.309 (4)C5—C61.481 (3)
N4—H4A0.8600C6—C71.496 (4)
N4—H4B0.8600C7—H7A0.9600
N5—C111.317 (3)C7—H7B0.9600
N5—H5A0.8600C7—H7C0.9600
N5—H5B0.8600C8—C91.496 (4)
N6—C81.280 (3)C9—H9C0.9600
N6—N71.370 (3)C9—H9D0.9600
N7—C101.356 (3)C9—H9E0.9600
N7—H70.8600O1W—H1WA0.8473
N8—C101.301 (4)O1W—H1WB0.8446
N8—H8A0.8600
Cl3—Cd1—Cl1117.39 (3)C3—C2—H2120.1
Cl3—Cd1—Cl4117.76 (3)C1—C2—H2120.1
Cl1—Cd1—Cl4124.84 (3)C2—C3—C4120.2 (3)
Cl3—Cd1—Cl593.40 (3)C2—C3—H3A119.9
Cl1—Cd1—Cl590.34 (3)C4—C3—H3A119.9
Cl4—Cd1—Cl587.73 (3)C3—C4—C5119.1 (3)
Cl3—Cd1—Cl294.25 (3)C3—C4—H4120.4
Cl1—Cd1—Cl287.50 (3)C5—C4—H4120.4
Cl4—Cd1—Cl287.36 (3)N1—C5—C4118.7 (2)
Cl5—Cd1—Cl2172.19 (2)N1—C5—C6118.0 (2)
C1—N1—C5123.8 (2)C4—C5—C6123.1 (2)
C1—N1—H1118.1N2—C6—C5113.2 (2)
C5—N1—H1118.1N2—C6—C7127.1 (2)
C6—N2—N3118.1 (2)C5—C6—C7119.6 (2)
C11—N3—N2116.9 (2)C6—C7—H7A109.5
C11—N3—H3121.6C6—C7—H7B109.5
N2—N3—H3121.6H7A—C7—H7B109.5
C11—N4—H4A120.0C6—C7—H7C109.5
C11—N4—H4B120.0H7A—C7—H7C109.5
H4A—N4—H4B120.0H7B—C7—H7C109.5
C11—N5—H5A120.0N6—C8—C1115.3 (2)
C11—N5—H5B120.0N6—C8—C9126.3 (2)
H5A—N5—H5B120.0C1—C8—C9118.3 (2)
C8—N6—N7117.6 (2)C8—C9—H9C109.5
C10—N7—N6118.3 (2)C8—C9—H9D109.5
C10—N7—H7120.9H9C—C9—H9D109.5
N6—N7—H7120.9C8—C9—H9E109.5
C10—N8—H8A120.0H9C—C9—H9E109.5
C10—N8—H8B120.0H9D—C9—H9E109.5
H8A—N8—H8B120.0N8—C10—N9123.1 (3)
C10—N9—H9A120.0N8—C10—N7120.1 (3)
C10—N9—H9B120.0N9—C10—N7116.8 (3)
H9A—N9—H9B120.0N4—C11—N5122.5 (3)
N1—C1—C2118.3 (2)N4—C11—N3119.3 (2)
N1—C1—C8119.0 (2)N5—C11—N3118.2 (3)
C2—C1—C8122.6 (2)H1WA—O1W—H1WB112.7
C3—C2—C1119.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.862.423.194 (4)151
N4—H4A···Cl50.862.313.154 (3)168
N5—H5A···Cl10.862.493.256 (2)149
N8—H8B···O1W0.862.032.854 (3)160
O1W—H1WB···Cl40.842.823.478 (3)136
N3—H3···Cl2i0.862.563.196 (2)132
N5—H5B···Cl2i0.862.753.394 (3)133
N5—H5B···Cl4i0.862.603.313 (3)140
N7—H7···Cl4ii0.862.563.367 (2)156
N8—H8A···Cl1iii0.862.403.247 (3)168
N9—H9A···Cl2iii0.862.413.227 (3)160
N9—H9B···Cl4ii0.862.673.450 (3)152
O1W—H1WA···Cl3iv0.852.673.266 (3)129

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+2, −y, −z+1; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2466).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Valdes-Martinez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Hernandez-Ortega, S., Espinosa-Perez, G., West, X. D. & Helfrich, B. (2002). Polyhedron, 21, 409–416.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography