PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1809.
Published online 2009 July 11. doi:  10.1107/S1600536809024556
PMCID: PMC2977478

5-Iodo-2-phenyl-3-phenyl­sulfinyl-1-benzofuran

Abstract

In the title compound, C20H13IO2S, the O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment; the phenyl ring is almost perpendicular to this plane [83.84 (5)°]. The phenyl ring in the 2-position is rotated out of the benzofuran plane, making a dihedral angle of 40.47 (5)°. The crystal structure is stabilized by non-classical inter­molecular C—H(...)O inter­actions, and by an I(...)O halogen bond of 3.124 (1) Å [C—I(...)O = 165.84 (5)°].

Related literature

For the crystal structures of similar 5-iodo-1-benzofuran derivatives, see: Choi et al. (2007a [triangle],b [triangle]). For a review of halogen inter­actions, see: Politzer et al. (2007 [triangle]). The Cambridge Structural Database (version 5.28; Allen et al., 2002 [triangle]) has 39 compounds with C–I(...)O=S contact distances less than or equal to 3.3 Å.

An external file that holds a picture, illustration, etc.
Object name is e-65-o1809-scheme1.jpg

Experimental

Crystal data

  • C20H13IO2S
  • M r = 444.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1809-efi1.jpg
  • a = 9.3544 (4) Å
  • b = 9.7565 (5) Å
  • c = 10.2808 (5) Å
  • α = 113.381 (1)°
  • β = 92.640 (1)°
  • γ = 98.047 (1)°
  • V = 847.42 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.02 mm−1
  • T = 273 K
  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.467, T max = 0.665
  • 7217 measured reflections
  • 3616 independent reflections
  • 3503 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.044
  • S = 1.07
  • 3616 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809024556/ng2605sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024556/ng2605Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to our communications on the synthesis and structures of 5-iodo-1-benzofuran analogues, viz. 5-iodo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007a) and 5-iodo-2-methyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007b). We present the crystal structure of the title compound (I), 5-iodo-2-phenyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle in (I) formed by the planes of the benzofuran and 2-phenyl rings is 40.47 (5)°, and the phenyl ring (C15-C20) with 83.84 (5)° lies toward the benzofuran plane. The crystal packing (Fig. 2) is stabilized by non-classical intermolecular C–H···O interactions; the first between an H atom of the 2-phenyl ring and the oxygen of the S═O unit, with a C10–H10···O2i, the second between a phenyl H atom of the phenylsulfinyl substituent and the furan O atom, with a C19–H19···O1ii, the third between a phenyl H atom of the phenylsulfinyl substituent and the oxygen of the S═O unit, with a C20–H20···O2iii, respectively (Table 1 and Fig. 2; symmetry code as in Fig. 2). The molecular packing (Fig. 2) is further stabilized by an I···O halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen of neighbouring S═O unit, with an I···Oiv (Symmetry code as in Fig. 2). The observed I···O separation of 3.124 (1) Å and the nearly linear C–I···O angle of 165.84 (5)° are typical for such halogen bonds. A search of Cambridge Structural Database (version 5.28; Allen, 2002) revealed 39 compounds with C–I···O═S contact distances equal to or less than 3.3 Å.

Experimental

The 77% 3-chloroperoxybenzoic acid (123 mg, 0.55 mmol) was added in small portions to a stirred solution of 5-iodo-2-phenyl-3-phenylsulfanyl-1-benzofuran (214 mg, 0.5 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 76%, m.p. 423-424 K; Rf = 0.74 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aromatic H atoms and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The C–H···O hydrogen bond and I···O halogen bond (dotted lines) in the title compound. [Symmetry code: (i) -x, -y, -z; (ii) x, y, z + 1; (iii) -x, -y, -z + 1; (iv) -x, -y + 1, -z + 1; (v) x, y, z ...

Crystal data

C20H13IO2SZ = 2
Mr = 444.26F(000) = 436
Triclinic, P1Dx = 1.741 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3544 (4) ÅCell parameters from 6672 reflections
b = 9.7565 (5) Åθ = 2.2–27.5°
c = 10.2808 (5) ŵ = 2.02 mm1
α = 113.381 (1)°T = 273 K
β = 92.640 (1)°Block, colorless
γ = 98.047 (1)°0.40 × 0.40 × 0.20 mm
V = 847.42 (7) Å3

Data collection

Bruker SMART CCD diffractometer3616 independent reflections
Radiation source: fine-focus sealed tube3503 reflections with I > 2σ(I)
graphiteRint = 0.014
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.2°
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)k = −12→12
Tmin = 0.467, Tmax = 0.665l = −13→12
7217 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: difference Fourier map
wR(F2) = 0.044H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0224P)2 + 0.4472P] where P = (Fo2 + 2Fc2)/3
3616 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.66 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I0.041308 (11)0.682844 (11)0.391884 (12)0.02610 (5)
S0.15151 (4)0.00846 (5)0.27065 (4)0.02113 (8)
O10.23863 (13)0.11727 (14)−0.05193 (12)0.0244 (2)
O20.01344 (13)0.05325 (15)0.32919 (13)0.0278 (3)
C10.19488 (18)0.09925 (19)0.15550 (17)0.0213 (3)
C20.16806 (17)0.24593 (19)0.16717 (17)0.0212 (3)
C30.12402 (18)0.37088 (19)0.27157 (18)0.0229 (3)
H30.10380.37140.35950.027*
C40.11164 (18)0.49421 (19)0.23915 (18)0.0231 (3)
C50.14158 (19)0.4962 (2)0.10730 (19)0.0263 (3)
H50.13290.58150.09010.032*
C60.1841 (2)0.3719 (2)0.00232 (19)0.0274 (4)
H60.20370.3707−0.08600.033*
C70.19590 (18)0.24964 (19)0.03641 (18)0.0231 (3)
C80.23701 (18)0.02755 (19)0.02314 (17)0.0222 (3)
C90.28197 (18)−0.11933 (19)−0.05014 (18)0.0223 (3)
C100.23677 (19)−0.2044 (2)−0.19558 (19)0.0265 (3)
H100.1800−0.1671−0.24630.032*
C110.2777 (2)−0.3454 (2)−0.2632 (2)0.0315 (4)
H110.2461−0.4036−0.35920.038*
C120.3653 (2)−0.4000 (2)−0.1890 (2)0.0347 (4)
H120.3929−0.4939−0.23550.042*
C130.4117 (2)−0.3148 (2)−0.0455 (2)0.0344 (4)
H130.4706−0.35150.00410.041*
C140.3700 (2)−0.1747 (2)0.0242 (2)0.0286 (4)
H140.4009−0.11780.12060.034*
C150.29386 (18)0.10909 (19)0.41498 (17)0.0216 (3)
C160.4258 (2)0.1827 (2)0.3995 (2)0.0333 (4)
H160.44110.19140.31420.040*
C170.5347 (2)0.2429 (3)0.5131 (2)0.0412 (5)
H170.62330.29310.50410.049*
C180.5124 (2)0.2288 (2)0.6400 (2)0.0342 (4)
H180.58640.26840.71520.041*
C190.3803 (2)0.1560 (2)0.65465 (19)0.0287 (4)
H190.36550.14730.74000.034*
C200.26963 (19)0.09587 (19)0.54241 (18)0.0244 (3)
H200.18050.04740.55230.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.02785 (7)0.02109 (7)0.03128 (7)0.00645 (4)0.00755 (5)0.01148 (5)
S0.02433 (19)0.02144 (19)0.02157 (18)0.00522 (15)0.00503 (15)0.01221 (15)
O10.0307 (6)0.0269 (6)0.0205 (5)0.0099 (5)0.0065 (5)0.0129 (5)
O20.0216 (6)0.0364 (7)0.0300 (6)0.0054 (5)0.0069 (5)0.0178 (6)
C10.0226 (7)0.0228 (8)0.0218 (7)0.0055 (6)0.0034 (6)0.0120 (6)
C20.0206 (7)0.0244 (8)0.0222 (7)0.0045 (6)0.0026 (6)0.0130 (6)
C30.0241 (8)0.0257 (8)0.0228 (8)0.0058 (6)0.0054 (6)0.0133 (7)
C40.0213 (8)0.0225 (8)0.0268 (8)0.0049 (6)0.0042 (6)0.0107 (7)
C50.0285 (8)0.0267 (9)0.0306 (9)0.0068 (7)0.0027 (7)0.0182 (7)
C60.0324 (9)0.0342 (9)0.0242 (8)0.0100 (7)0.0064 (7)0.0190 (7)
C70.0235 (8)0.0271 (8)0.0223 (8)0.0071 (6)0.0038 (6)0.0129 (7)
C80.0223 (7)0.0264 (8)0.0219 (8)0.0052 (6)0.0022 (6)0.0137 (7)
C90.0215 (7)0.0250 (8)0.0228 (8)0.0045 (6)0.0063 (6)0.0115 (7)
C100.0267 (8)0.0279 (9)0.0245 (8)0.0028 (7)0.0032 (7)0.0108 (7)
C110.0371 (10)0.0266 (9)0.0260 (9)−0.0001 (7)0.0091 (7)0.0070 (7)
C120.0409 (11)0.0231 (9)0.0413 (11)0.0096 (8)0.0169 (9)0.0118 (8)
C130.0364 (10)0.0333 (10)0.0414 (11)0.0150 (8)0.0092 (8)0.0201 (9)
C140.0316 (9)0.0296 (9)0.0266 (8)0.0098 (7)0.0038 (7)0.0121 (7)
C150.0225 (8)0.0233 (8)0.0227 (8)0.0081 (6)0.0039 (6)0.0117 (6)
C160.0260 (9)0.0531 (12)0.0292 (9)0.0036 (8)0.0057 (7)0.0262 (9)
C170.0238 (9)0.0654 (15)0.0401 (11)−0.0027 (9)0.0013 (8)0.0312 (11)
C180.0286 (9)0.0472 (11)0.0289 (9)0.0068 (8)−0.0010 (7)0.0179 (8)
C190.0370 (10)0.0330 (9)0.0218 (8)0.0109 (8)0.0069 (7)0.0151 (7)
C200.0272 (8)0.0239 (8)0.0264 (8)0.0071 (6)0.0079 (7)0.0133 (7)

Geometric parameters (Å, °)

I—C42.104 (2)C10—C111.391 (3)
I—O2i3.124 (1)C10—H100.9300
S—O21.497 (1)C11—C121.387 (3)
S—C11.768 (2)C11—H110.9300
S—C151.799 (2)C12—C131.386 (3)
O1—C81.377 (2)C12—H120.9300
O1—C71.378 (2)C13—C141.389 (3)
C1—C81.367 (2)C13—H130.9300
C1—C21.447 (2)C14—H140.9300
C2—C71.394 (2)C15—C161.388 (2)
C2—C31.397 (2)C15—C201.392 (2)
C3—C41.388 (2)C16—C171.387 (3)
C3—H30.9300C16—H160.9300
C4—C51.404 (2)C17—C181.386 (3)
C5—C61.389 (3)C17—H170.9300
C5—H50.9300C18—C191.382 (3)
C6—C71.387 (2)C18—H180.9300
C6—H60.9300C19—C201.389 (3)
C8—C91.463 (2)C19—H190.9300
C9—C141.397 (2)C20—H200.9300
C9—C101.401 (2)
C4—I—O2i165.84 (5)C11—C10—H10120.4
O2—S—C1107.63 (7)C9—C10—H10120.4
O2—S—C15106.00 (8)C12—C11—C10120.66 (17)
C1—S—C15100.57 (8)C12—C11—H11119.7
C8—O1—C7106.38 (12)C10—C11—H11119.7
C8—C1—C2107.02 (14)C13—C12—C11120.13 (17)
C8—C1—S123.64 (13)C13—C12—H12119.9
C2—C1—S128.38 (12)C11—C12—H12119.9
C7—C2—C3119.26 (15)C12—C13—C14119.94 (18)
C7—C2—C1104.91 (14)C12—C13—H13120.0
C3—C2—C1135.83 (15)C14—C13—H13120.0
C4—C3—C2117.47 (15)C13—C14—C9120.11 (17)
C4—C3—H3121.3C13—C14—H14119.9
C2—C3—H3121.3C9—C14—H14119.9
C3—C4—C5122.37 (16)C16—C15—C20120.95 (16)
C3—C4—I118.65 (12)C16—C15—S123.40 (13)
C5—C4—I118.96 (12)C20—C15—S115.34 (13)
C6—C5—C4120.55 (15)C17—C16—C15119.05 (17)
C6—C5—H5119.7C17—C16—H16120.5
C4—C5—H5119.7C15—C16—H16120.5
C7—C6—C5116.34 (16)C18—C17—C16120.50 (18)
C7—C6—H6121.8C18—C17—H17119.8
C5—C6—H6121.8C16—C17—H17119.8
O1—C7—C6125.17 (15)C19—C18—C17120.03 (18)
O1—C7—C2110.82 (14)C19—C18—H18120.0
C6—C7—C2124.00 (16)C17—C18—H18120.0
C1—C8—O1110.87 (14)C18—C19—C20120.30 (16)
C1—C8—C9133.30 (15)C18—C19—H19119.8
O1—C8—C9115.81 (14)C20—C19—H19119.8
C14—C9—C10119.94 (16)C19—C20—C15119.15 (16)
C14—C9—C8120.26 (15)C19—C20—H20120.4
C10—C9—C8119.80 (15)C15—C20—H20120.4
C11—C10—C9119.19 (17)
O2—S—C1—C8−134.10 (15)C7—O1—C8—C1−0.06 (18)
C15—S—C1—C8115.21 (15)C7—O1—C8—C9−178.86 (14)
O2—S—C1—C233.18 (17)C1—C8—C9—C14−39.3 (3)
C15—S—C1—C2−77.52 (16)O1—C8—C9—C14139.16 (16)
C8—C1—C2—C70.54 (18)C1—C8—C9—C10140.9 (2)
S—C1—C2—C7−168.40 (13)O1—C8—C9—C10−40.7 (2)
C8—C1—C2—C3−179.78 (19)C14—C9—C10—C111.5 (3)
S—C1—C2—C311.3 (3)C8—C9—C10—C11−178.63 (16)
C7—C2—C3—C4−0.6 (2)C9—C10—C11—C12−1.6 (3)
C1—C2—C3—C4179.73 (18)C10—C11—C12—C130.7 (3)
C2—C3—C4—C50.0 (2)C11—C12—C13—C140.2 (3)
C2—C3—C4—I178.71 (12)C12—C13—C14—C9−0.2 (3)
C3—C4—C5—C60.6 (3)C10—C9—C14—C13−0.7 (3)
I—C4—C5—C6−178.10 (13)C8—C9—C14—C13179.52 (17)
C4—C5—C6—C7−0.5 (3)O2—S—C15—C16−135.76 (16)
C8—O1—C7—C6179.37 (17)C1—S—C15—C16−23.80 (17)
C8—O1—C7—C20.42 (18)O2—S—C15—C2050.62 (14)
C5—C6—C7—O1−178.91 (16)C1—S—C15—C20162.58 (13)
C5—C6—C7—C2−0.1 (3)C20—C15—C16—C170.3 (3)
C3—C2—C7—O1179.66 (14)S—C15—C16—C17−172.99 (17)
C1—C2—C7—O1−0.59 (18)C15—C16—C17—C180.5 (3)
C3—C2—C7—C60.7 (3)C16—C17—C18—C19−0.8 (4)
C1—C2—C7—C6−179.56 (16)C17—C18—C19—C200.4 (3)
C2—C1—C8—O1−0.30 (19)C18—C19—C20—C150.4 (3)
S—C1—C8—O1169.29 (11)C16—C15—C20—C19−0.7 (3)
C2—C1—C8—C9178.21 (17)S—C15—C20—C19173.06 (13)
S—C1—C8—C9−12.2 (3)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···O2ii0.932.533.438 (2)165
C19—H19···O1iii0.932.593.483 (2)162
C20—H20···O2iv0.932.533.412 (2)159

Symmetry codes: (ii) −x, −y, −z; (iii) x, y, z+1; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2605).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3745.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o3851.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model 13, 305–311. [PubMed]
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography