PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o2039.
Published online 2009 July 29. doi:  10.1107/S1600536809029511
PMCID: PMC2977476

Ethyl 3-[(3,5-dimethyl­phen­yl)amino­carbon­yl]propanoate

Abstract

The non-H atoms in the title compound, C14H19NO3, lie on a mirror plane. The amide O and ester carbonyl O atoms are trans to each other. Furthermore, the C=O and O—CH2 bonds of the ester group are syn with respect to each other. In the crystal, mol­ecules are packed into centrosymmetric dimers through inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related structures, see: Gowda et al. (2009a [triangle],b [triangle],c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2039-scheme1.jpg

Experimental

Crystal data

  • C14H19NO3
  • M r = 249.30
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-65-o2039-efi1.jpg
  • a = 19.938 (2) Å
  • c = 7.0367 (9) Å
  • V = 2797.3 (5) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 0.67 mm−1
  • T = 299 K
  • 0.40 × 0.28 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 4040 measured reflections
  • 1367 independent reflections
  • 1201 reflections with I > 2σ(I)
  • R int = 0.044
  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.169
  • S = 1.11
  • 1367 reflections
  • 120 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029511/tk2515sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029511/tk2515Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for a resumption of his research fellowship.

supplementary crystallographic information

Comment

As a part of studying the effect of ring and side chain substitutions on the structures of the substituted amides (Gowda et al., 2009a,b,c), the crystal structure of ethyl N-(3,5-dimethylphenyl)succinamate (I) has been determined. The non-hydrogen atoms lie on a crystallographic mirror plane. The conformations of N—H and C=O bonds in the amide segment of the structure are trans to each other (Fig. 1). Likewise, the amide-O atom and ester carbonyl-O atoms are trans to each other. The C=O and O—CH2 bonds of the ester group are in syn positions to each other, similar to that observed between the C=O and O—H bonds in the crystal structures of N-(2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b) and N-(2-chlorophenyl)succinamic acid (Gowda et al., 2009a).

The presence of N—H···O hydrogen bonds connect the molecules into centrosymmetric dimers (Table 1).

Experimental

A solution of succinic anhydride (0.025 mole) in toluene (25 ml) was treated dropwise with a solution of 3,5-dimethylaniline (0.025 mole) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,5-dimethylaniline. The resultant solid N-(3,5-dimethylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. N-(3,5-Dimethylphenyl)succinamic acid was recrystallized into ethyl N-(3,5-dimethylphenyl)succinamate (I) from hot ethanol. The rod like colourless single crystals of (I) were grown in hot ethanolic solution by slow evaporation.

Refinement

The H atoms of the NH group, of C11 and C12 were located in a difference map and their position refined [N—H = 0.85 (3) Å, C—H = 0.98 (4)–1.03 (3) Å]. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling and the displacement ellipsoids are at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of (I) with hydrogen bonds shown as dashed lines.

Crystal data

C14H19NO3Dx = 1.184 Mg m3
Mr = 249.30Cu Kα radiation, λ = 1.54180 Å
Tetragonal, I4/mCell parameters from 25 reflections
Hall symbol: -I 4θ = 4.4–20.5°
a = 19.938 (2) ŵ = 0.67 mm1
c = 7.0367 (9) ÅT = 299 K
V = 2797.3 (5) Å3Rod, colourless
Z = 80.40 × 0.28 × 0.25 mm
F(000) = 1072

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.044
Radiation source: fine-focus sealed tubeθmax = 67.0°, θmin = 3.1°
graphiteh = −16→23
ω/2θ scansk = −16→23
4040 measured reflectionsl = −3→8
1367 independent reflections3 standard reflections every 120 min
1201 reflections with I > 2σ(I) intensity decay: 1.0%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169w = 1/[σ2(Fo2) + (0.1022P)2 + 1.0554P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1367 reflectionsΔρmax = 0.32 e Å3
120 parametersΔρmin = −0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.60839 (11)0.20945 (11)0.00000.0465 (6)
C20.67561 (12)0.19085 (12)0.00000.0513 (6)
H20.68690.14560.00000.062*
C30.72584 (12)0.23863 (13)0.00000.0532 (6)
C40.70778 (13)0.30566 (14)0.00000.0579 (7)
H40.74110.33830.00000.070*
C50.64153 (13)0.32504 (12)0.00000.0562 (7)
C60.59123 (12)0.27666 (12)0.00000.0522 (6)
H60.54640.28940.00000.063*
C70.49362 (12)0.15957 (11)0.00000.0506 (6)
C80.45900 (11)0.09187 (12)0.00000.0543 (7)
H8A0.47280.0668−0.11150.065*0.50
H8B0.47280.06680.11150.065*0.50
C90.38416 (12)0.09873 (11)0.00000.0515 (6)
H9A0.37080.12420.11130.062*0.50
H9B0.37080.1242−0.11130.062*0.50
C100.34741 (11)0.03335 (12)0.00000.0491 (6)
C110.23912 (14)−0.01607 (15)0.00000.0666 (8)
H110.2470 (10)−0.0432 (11)0.118 (3)0.080*
C120.16867 (16)0.0096 (2)0.00000.0849 (10)
H12A0.139 (2)−0.029 (2)0.00000.102*
H12B0.1605 (12)0.0349 (13)0.126 (4)0.102*
C130.79850 (13)0.21804 (16)0.00000.0652 (7)
H13A0.80770.1916−0.11100.078*0.50
H13B0.80780.19200.11180.078*0.50
H13C0.82630.2573−0.00070.078*
C140.62237 (18)0.39835 (14)0.00000.0829 (10)
H14A0.64030.4196−0.11130.099*0.50
H14B0.64020.41960.11150.099*0.50
H14C0.57440.4024−0.00030.099*
N10.56095 (10)0.15635 (10)0.00000.0519 (6)
H1N0.5776 (15)0.1170 (16)0.00000.062*
O10.46202 (9)0.21173 (9)0.00000.0821 (8)
O20.37347 (9)−0.02118 (8)0.00000.0701 (7)
O30.28217 (8)0.04272 (8)0.00000.0614 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0444 (12)0.0435 (12)0.0516 (12)−0.0050 (9)0.0000.000
C20.0475 (13)0.0481 (13)0.0583 (13)−0.0009 (9)0.0000.000
C30.0465 (12)0.0632 (15)0.0498 (12)−0.0103 (10)0.0000.000
C40.0567 (15)0.0593 (15)0.0578 (14)−0.0177 (11)0.0000.000
C50.0621 (15)0.0464 (13)0.0601 (14)−0.0105 (10)0.0000.000
C60.0494 (13)0.0426 (12)0.0645 (14)−0.0036 (9)0.0000.000
C70.0433 (12)0.0411 (12)0.0673 (15)0.0014 (9)0.0000.000
C80.0432 (13)0.0422 (13)0.0775 (16)−0.0015 (9)0.0000.000
C90.0447 (13)0.0425 (12)0.0673 (15)0.0006 (9)0.0000.000
C100.0430 (12)0.0449 (12)0.0594 (14)0.0013 (9)0.0000.000
C110.0497 (14)0.0559 (15)0.094 (2)−0.0124 (11)0.0000.000
C120.0490 (16)0.094 (3)0.112 (3)−0.0109 (15)0.0000.000
C130.0460 (14)0.0815 (19)0.0681 (16)−0.0094 (12)0.0000.000
C140.083 (2)0.0443 (15)0.121 (3)−0.0118 (13)0.0000.000
N10.0424 (11)0.0367 (10)0.0768 (14)−0.0013 (8)0.0000.000
O10.0481 (10)0.0416 (10)0.157 (2)0.0021 (7)0.0000.000
O20.0514 (10)0.0397 (10)0.1193 (18)0.0015 (7)0.0000.000
O30.0420 (9)0.0458 (9)0.0965 (14)−0.0017 (7)0.0000.000

Geometric parameters (Å, °)

C1—C61.383 (3)C9—H9A0.9700
C1—C21.391 (3)C9—H9B0.9700
C1—N11.420 (3)C10—O21.205 (3)
C2—C31.382 (3)C10—O31.314 (3)
C2—H20.9300C11—H11i1.00 (2)
C3—C41.384 (4)C11—O31.453 (3)
C3—C131.506 (4)C11—C121.495 (4)
C4—C51.376 (4)C11—H111.00 (2)
C4—H40.9300C12—H12Bi1.03 (3)
C5—C61.392 (3)C12—H12A0.98 (4)
C5—C141.511 (4)C12—H12B1.03 (3)
C6—H60.9300C13—H13A0.9600
C7—O11.216 (3)C13—H13B0.9600
C7—N11.344 (3)C13—H13C0.9600
C7—C81.516 (3)C14—H14A0.9600
C8—C91.498 (3)C14—H14B0.9600
C8—H8A0.9700C14—H14C0.9600
C8—H8B0.9700N1—H1N0.85 (3)
C9—C101.495 (3)
C6—C1—C2119.8 (2)H9A—C9—H9B107.6
C6—C1—N1123.9 (2)O2—C10—O3123.7 (2)
C2—C1—N1116.3 (2)O2—C10—C9125.1 (2)
C3—C2—C1121.0 (2)O3—C10—C9111.17 (19)
C3—C2—H2119.5H11i—C11—O3110.1 (12)
C1—C2—H2119.5H11i—C11—C12109.4 (12)
C2—C3—C4118.5 (2)O3—C11—C12106.2 (2)
C2—C3—C13120.6 (3)H11i—C11—H11112 (3)
C4—C3—C13120.9 (2)O3—C11—H11110.1 (12)
C5—C4—C3121.4 (2)C12—C11—H11109.4 (12)
C5—C4—H4119.3H12Bi—C12—C11108.4 (14)
C3—C4—H4119.3H12Bi—C12—H12A106.9 (16)
C4—C5—C6119.8 (2)C11—C12—H12A107 (2)
C4—C5—C14121.0 (2)H12Bi—C12—H12B118 (3)
C6—C5—C14119.2 (3)C11—C12—H12B108.4 (14)
C1—C6—C5119.6 (2)H12A—C12—H12B106.9 (16)
C1—C6—H6120.2C3—C13—H13A109.5
C5—C6—H6120.2C3—C13—H13B109.5
O1—C7—N1123.9 (2)H13A—C13—H13B109.5
O1—C7—C8121.7 (2)C3—C13—H13C109.5
N1—C7—C8114.3 (2)H13A—C13—H13C109.5
C9—C8—C7111.8 (2)H13B—C13—H13C109.5
C9—C8—H8A109.2C5—C14—H14A109.5
C7—C8—H8A109.2C5—C14—H14B109.5
C9—C8—H8B109.2H14A—C14—H14B109.5
C7—C8—H8B109.2C5—C14—H14C109.5
H8A—C8—H8B107.9H14A—C14—H14C109.5
C10—C9—C8114.1 (2)H14B—C14—H14C109.5
C10—C9—H9A108.7C7—N1—C1129.0 (2)
C8—C9—H9A108.7C7—N1—H1N116 (2)
C10—C9—H9B108.7C1—N1—H1N115 (2)
C8—C9—H9B108.7C10—O3—C11118.0 (2)
C6—C1—C2—C30.0C7—C8—C9—C10180.0
N1—C1—C2—C3180.0C8—C9—C10—O20.0
C1—C2—C3—C40.0C8—C9—C10—O3180.0
C1—C2—C3—C13180.0H11i—C11—C12—H12Bi−54 (2)
C2—C3—C4—C50.0O3—C11—C12—H12Bi64.8 (16)
C13—C3—C4—C5180.0O1—C7—N1—C10.0
C3—C4—C5—C60.0C8—C7—N1—C1180.0
C3—C4—C5—C14180.0C6—C1—N1—C70.0
C2—C1—C6—C50.0C2—C1—N1—C7180.0
N1—C1—C6—C5180.0O2—C10—O3—C110.0
C4—C5—C6—C10.0C9—C10—O3—C11180.0
C14—C5—C6—C1180.0H11i—C11—O3—C10−61.7 (13)
O1—C7—C8—C90.0C12—C11—O3—C10180.0
N1—C7—C8—C9180.0

Symmetry codes: (i) x, y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2ii0.85 (3)2.15 (3)2.995 (3)176 (3)

Symmetry codes: (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2515).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009a). Acta Cryst. E65, o399. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009b). Acta Cryst. E65, o466. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009c). Acta Cryst. E65, o873. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography