PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): m948–m949.
Published online 2009 July 18. doi:  10.1107/S1600536809027603
PMCID: PMC2977470

Tetra­kis(μ-4-methyl­benzoato-κO:O′)bis­{[4-(dimethyl­amino)pyridine-κN 1]zinc(II)}

Abstract

In the centrosymmetric title binuclear complex, [Zn2(C8H7O2)4(C7H10N2)2], the Zn atoms [Zn(...)Zn = 3.0287 (6) Å] are bridged by four 4-methyl­benzoate ligands. The four nearest O atoms around each ZnII atom form a distorted square-planar arrangement with the distorted square-pyramidal coordination completed by the pyridine N atom of the 4-(dimethyl­amino)pyridine ligand. In the crystal structure, weak inter­molecular C—H(...)O inter­actions link the mol­ecules into infinite chains. The chains are further linked by weak C—H(...)π inter­actions, forming a three-dimensional network.

Related literature

For potential applications of organometallic complexes, see: Sommerfeldt et al. (2008 [triangle]); Huang et al. (2007 [triangle]); Neville et al. (2008 [triangle]). Zinc derivatives are used in photodynamic therapy because of their unique photosensitizing properties, see: Tabata et al. (2000 [triangle]); Shi et al. (2008 [triangle]); Xiao et al. (2008 [triangle]); Yang et al. (2008 [triangle]). For comparative bond lengths, see: Halcrow et al. (2000 [triangle]); For related structures, see: Yang et al. (2004 [triangle]); You et al. (2003 [triangle], 2004 [triangle]); Wang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m948-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C8H7O2)4(C7H10N2)2]
  • M r = 915.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m948-efi1.jpg
  • a = 8.9311 (18) Å
  • b = 9.967 (2) Å
  • c = 24.756 (5) Å
  • β = 90.64 (3)°
  • V = 2203.5 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.15 mm−1
  • T = 294 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: ψ scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.758, T max = 0.792
  • 12095 measured reflections
  • 4326 independent reflections
  • 3432 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 1.03
  • 4326 reflections
  • 275 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027603/hk2733sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027603/hk2733Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Numerous organometallic complexes have been designed for a number of potential applications, such as in synthetic chemistry (Sommerfeldt et al., 2008), as luminescence materials (Huang et al., 2007) and as magnetic materials (Neville et al., 2008). Zinc derivatives are particularly interesting owing to their unique photosensitizing properties for photodynamic therapy (Tabata et al., 2000; Shi et al., 2008; Xiao et al., 2008; Yang et al., 2008;), magnetic circularly polarized luminescence (MCPL) and magnetic circular dichroism (MCD) spectra. We have reported the structures of a few zinc(II) complexes (Yang et al., 2004; You et al., 2003, 2004). As an extension of our work on the structural characterizations of zinc compounds, we report herein the crystal structure of the title compound.

The title compound is a binuclear compound (Fig. 1), consisting of four 4-methylbenzoato and two 4-(N,N-diamino)pyridine ligands. It has a centre of symmetry. The 4-(N,N-diamino)pyridine ligands are coordinated to Zn atoms through pyridine N atoms only. The 4-methylbenzoato groups act as bridging ligands. The Zn···ZnA distance is 3.0287 (6) Å and the N1-Zn1···Zn1A angle is 169.82 (5) [symmetry code: (A) 2 - x, 2 - y, -z]. The four O atoms of the bridging 4-methylbenzoato ligands around each Zn atom form a distorted square plane (Table 1). A distorted square-pyramidal arrangement around each Zn atom is completed by the pyridine N atom of 4-(N,N-diamino)pyridine ligand (Table 1). The dihedral angle between plane through Zn1, O1, O2, C2, Zn1A, O1A, O2A, C2A and the plane through Zn1, O3, O4, C1, Zn1A, O3A, O4A, C1A is 87.931 (24) °. The Zn-O bonds are in the range of 2.0320 (16)-2.0626 (15) Å, and are in accordance with the corresponding values in a similar compound (Wang et al., 2009). The Zn1-N1 [2.0160 (16) Å] bond is significantly shorter than the corresponding reported values (Halcrow et al., 2000).

In the crystal structure, weak intermolecular C-H···O interactions (Table 2) link the molecules into infinite chains (Fig. 2), in which they are further linked by weak C—H···π interactions (Table 2) to form a three-dimensional network (Fig. 3).

Experimental

For the preparation of the title compound, zinc oxide (0.5 mmol) and 4-methylbenzoic acid (1 mmol) were dissolved in aqueous ammonia (10 ml, 30%,) and then, 4-(N,N-dimethylamino)pyridine (0.5 mmol) was added. The resulting solution was stirred at room temperature and then filtered. Crystals suitable for X-ray analysis were obtained after 13 to 15 d by volatilization of the solvents.

Refinement

H atoms were positioned geometrically with C-H = 0.93 and 0.96 Å, for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (A) 2 - x, 2 - y, -z]. H atoms have been omitted for clarity.
Fig. 2.
The chain formed through C—H···O intermolecular hydrogen bonds. Hydrogen bonds are shown as dashed lines.
Fig. 3.
A partial packing diagram, with C—H···π contacts shown as dashed lines.

Crystal data

[Zn2(C8H7O2)4(C7H10N2)2]F(000) = 952
Mr = 915.66Dx = 1.380 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3875 reflections
a = 8.9311 (18) Åθ = 1.8–29.5°
b = 9.967 (2) ŵ = 1.15 mm1
c = 24.756 (5) ÅT = 294 K
β = 90.64 (3)°Block, colorless
V = 2203.5 (8) Å30.30 × 0.20 × 0.20 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer4326 independent reflections
Radiation source: fine-focus sealed tube3432 reflections with I > 2σ(I)
graphiteRint = 0.020
[var phi] and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: ψ scan (SADABS; Sheldrick, 1996)h = −11→10
Tmin = 0.758, Tmax = 0.792k = −11→12
12095 measured reflectionsl = −30→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3207P] where P = (Fo2 + 2Fc2)/3
4326 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn11.13033 (2)0.90381 (2)0.006145 (10)0.05090 (10)
O10.83151 (18)0.93234 (15)−0.05487 (7)0.0678 (4)
O21.01833 (16)0.78450 (16)−0.04910 (6)0.0653 (4)
O30.98300 (16)0.84236 (16)0.06369 (6)0.0635 (4)
O40.79517 (17)0.98974 (15)0.05820 (6)0.0662 (4)
N11.31222 (17)0.79423 (16)0.02637 (7)0.0513 (4)
N21.67263 (18)0.53691 (18)0.05771 (7)0.0564 (4)
C10.8638 (2)0.8943 (2)0.08022 (9)0.0531 (5)
C20.8981 (2)0.8279 (2)−0.06917 (9)0.0535 (5)
C30.8268 (2)0.7505 (2)−0.11421 (8)0.0508 (5)
C40.8823 (3)0.6275 (2)−0.13030 (9)0.0609 (6)
H40.96390.5903−0.11210.073*
C50.8182 (3)0.5598 (3)−0.17289 (10)0.0756 (7)
H50.85760.4774−0.18320.091*
C60.6971 (4)0.6111 (3)−0.20062 (12)0.0881 (8)
C70.6411 (3)0.7325 (3)−0.18418 (12)0.0934 (9)
H70.55890.7689−0.20230.112*
C80.7040 (3)0.8013 (3)−0.14147 (10)0.0724 (6)
H80.66320.8828−0.13090.087*
C90.8005 (2)0.8393 (2)0.13138 (8)0.0540 (5)
C100.6700 (3)0.8879 (3)0.15302 (11)0.0788 (7)
H100.61510.95270.13440.095*
C110.6197 (3)0.8414 (3)0.20207 (12)0.0911 (9)
H110.53120.87570.21590.109*
C120.6974 (3)0.7456 (3)0.23093 (10)0.0764 (7)
C130.8222 (3)0.6931 (3)0.20795 (10)0.0796 (7)
H130.87360.62450.22560.096*
C140.8740 (3)0.7392 (3)0.15917 (9)0.0699 (6)
H140.96030.70190.14480.084*
C151.4414 (2)0.8023 (2)−0.00023 (9)0.0560 (5)
H151.44860.8667−0.02730.067*
C161.5632 (2)0.7230 (2)0.00943 (9)0.0558 (5)
H161.64990.7354−0.01040.067*
C171.5585 (2)0.62332 (19)0.04898 (8)0.0483 (5)
C181.4256 (2)0.6191 (2)0.07871 (9)0.0612 (6)
H181.41650.55900.10720.073*
C191.3102 (2)0.7026 (2)0.06594 (9)0.0626 (6)
H191.22340.69550.08620.075*
C201.6662 (3)0.4385 (3)0.10068 (11)0.0752 (7)
H20A1.67060.48330.13500.113*
H20B1.74950.37810.09780.113*
H20C1.57430.38890.09770.113*
C211.8086 (2)0.5430 (2)0.02665 (10)0.0648 (6)
H21A1.78370.5548−0.01090.097*
H21B1.86370.46110.03130.097*
H21C1.86850.61720.03890.097*
C220.6270 (6)0.5356 (5)−0.24752 (17)0.166 (2)
H22A0.65120.5800−0.28070.249*
H22B0.52030.5335−0.24340.249*
H22C0.66510.4456−0.24820.249*
C230.6490 (4)0.7010 (4)0.28691 (11)0.1126 (12)
H23A0.65950.60540.29000.169*
H23B0.54630.72540.29230.169*
H23C0.71080.74400.31380.169*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.04359 (14)0.04260 (15)0.06657 (18)0.00739 (9)0.00287 (10)−0.00171 (11)
O10.0702 (10)0.0516 (9)0.0817 (11)0.0032 (7)−0.0006 (8)−0.0136 (8)
O20.0597 (9)0.0620 (10)0.0741 (10)0.0013 (7)−0.0071 (8)−0.0082 (8)
O30.0556 (9)0.0614 (9)0.0738 (10)0.0026 (7)0.0160 (7)0.0037 (8)
O40.0654 (9)0.0570 (9)0.0766 (10)0.0070 (7)0.0126 (8)0.0074 (8)
N10.0447 (9)0.0450 (9)0.0641 (10)0.0063 (7)0.0043 (8)0.0011 (8)
N20.0457 (9)0.0522 (10)0.0712 (11)0.0056 (8)−0.0056 (8)0.0082 (9)
C10.0511 (11)0.0467 (12)0.0616 (13)−0.0043 (9)0.0032 (10)−0.0070 (10)
C20.0528 (12)0.0482 (12)0.0598 (12)−0.0067 (9)0.0100 (10)−0.0005 (10)
C30.0499 (11)0.0485 (11)0.0540 (11)−0.0045 (9)0.0080 (9)0.0017 (9)
C40.0607 (13)0.0546 (13)0.0676 (14)0.0030 (10)0.0008 (11)−0.0032 (11)
C50.0865 (18)0.0614 (15)0.0790 (17)0.0038 (13)0.0002 (14)−0.0168 (13)
C60.098 (2)0.085 (2)0.0801 (18)−0.0004 (16)−0.0184 (16)−0.0201 (15)
C70.092 (2)0.094 (2)0.094 (2)0.0121 (16)−0.0355 (16)−0.0111 (17)
C80.0743 (15)0.0655 (15)0.0772 (16)0.0103 (12)−0.0059 (13)−0.0044 (13)
C90.0538 (11)0.0495 (12)0.0587 (12)−0.0059 (9)0.0051 (10)−0.0104 (10)
C100.0797 (17)0.0779 (18)0.0793 (17)0.0133 (13)0.0220 (14)0.0023 (14)
C110.0867 (19)0.099 (2)0.088 (2)0.0087 (17)0.0367 (16)−0.0091 (18)
C120.0894 (19)0.0836 (18)0.0564 (14)−0.0188 (15)0.0126 (13)−0.0142 (14)
C130.0849 (18)0.0905 (19)0.0635 (15)−0.0005 (15)0.0011 (13)0.0089 (14)
C140.0683 (14)0.0770 (16)0.0646 (14)0.0052 (12)0.0088 (11)0.0022 (13)
C150.0511 (11)0.0451 (11)0.0720 (14)0.0026 (9)0.0079 (10)0.0118 (10)
C160.0430 (10)0.0507 (12)0.0738 (14)0.0031 (9)0.0099 (9)0.0090 (11)
C170.0431 (10)0.0436 (11)0.0582 (12)−0.0005 (8)−0.0043 (9)−0.0020 (9)
C180.0523 (12)0.0662 (14)0.0651 (14)0.0066 (10)0.0034 (10)0.0185 (11)
C190.0475 (11)0.0728 (15)0.0679 (14)0.0083 (10)0.0120 (10)0.0096 (12)
C200.0672 (15)0.0716 (16)0.0866 (17)0.0099 (12)−0.0103 (13)0.0199 (14)
C210.0490 (12)0.0591 (13)0.0863 (16)0.0112 (10)0.0010 (11)−0.0007 (12)
C220.186 (5)0.159 (4)0.150 (4)0.019 (3)−0.084 (3)−0.075 (3)
C230.145 (3)0.133 (3)0.0599 (16)−0.024 (2)0.0253 (18)−0.0083 (18)

Geometric parameters (Å, °)

Zn1—Zn1i3.0287 (6)C12—C131.362 (4)
Zn1—O1i2.0564 (16)C12—C231.523 (4)
Zn1—O4i2.0320 (16)C13—C141.377 (3)
O1—Zn1i2.0564 (16)C13—H130.9300
O2—Zn12.0626 (15)C14—H140.9300
O3—Zn12.0438 (15)C15—N11.337 (3)
O4—Zn1i2.0320 (16)C15—C161.365 (3)
N1—Zn12.0160 (16)C15—H150.9300
C1—O41.253 (2)C16—C171.396 (3)
C1—O31.256 (2)C16—H160.9300
C1—C91.497 (3)C17—N21.350 (2)
C2—O11.252 (3)C17—C181.404 (3)
C2—O21.255 (3)C18—C191.359 (3)
C2—C31.492 (3)C18—H180.9300
C3—C81.378 (3)C19—N11.340 (3)
C3—C41.383 (3)C19—H190.9300
C4—C51.372 (3)C20—N21.449 (3)
C4—H40.9300C20—H20A0.9600
C5—C61.373 (4)C20—H20B0.9600
C5—H50.9300C20—H20C0.9600
C6—C71.373 (4)C21—N21.446 (3)
C6—C221.513 (4)C21—H21A0.9600
C7—C81.375 (4)C21—H21B0.9600
C7—H70.9300C21—H21C0.9600
C8—H80.9300C22—H22A0.9600
C9—C141.375 (3)C22—H22B0.9600
C9—C101.376 (3)C22—H22C0.9600
C10—C111.379 (4)C23—H23A0.9600
C10—H100.9300C23—H23B0.9600
C11—C121.376 (4)C23—H23C0.9600
C11—H110.9300
O1i—Zn1—Zn1i71.24 (5)C9—C10—H10119.7
O1i—Zn1—O2157.33 (6)C11—C10—H10119.7
O2—Zn1—Zn1i86.09 (5)C12—C11—C10121.5 (3)
O3—Zn1—Zn1i76.09 (5)C12—C11—H11119.2
O3—Zn1—O1i86.16 (7)C10—C11—H11119.2
O3—Zn1—O288.75 (6)C13—C12—C11117.4 (2)
O4i—Zn1—Zn1i81.30 (5)C13—C12—C23120.6 (3)
O4i—Zn1—O1i89.51 (7)C11—C12—C23121.9 (3)
O4i—Zn1—O286.67 (7)C12—C13—C14121.5 (3)
O4i—Zn1—O3157.18 (6)C12—C13—H13119.2
N1—Zn1—Zn1i169.82 (5)C14—C13—H13119.2
N1—Zn1—O1i99.01 (7)C9—C14—C13121.2 (2)
N1—Zn1—O2103.64 (7)C9—C14—H14119.4
N1—Zn1—O3100.83 (7)C13—C14—H14119.4
N1—Zn1—O4i101.98 (7)N1—C15—C16124.71 (19)
C2—O1—Zn1i138.60 (15)N1—C15—H15117.6
C2—O2—Zn1118.06 (14)C16—C15—H15117.6
C1—O3—Zn1131.15 (15)C15—C16—C17120.32 (19)
C1—O4—Zn1i125.07 (14)C15—C16—H16119.8
C15—N1—C19114.85 (17)C17—C16—H16119.8
C15—N1—Zn1122.82 (14)N2—C17—C16122.49 (18)
C19—N1—Zn1122.25 (13)N2—C17—C18122.56 (19)
C17—N2—C21121.69 (18)C16—C17—C18114.95 (18)
C17—N2—C20120.89 (18)C19—C18—C17120.2 (2)
C21—N2—C20117.35 (18)C19—C18—H18119.9
O4—C1—O3125.7 (2)C17—C18—H18119.9
O4—C1—C9117.31 (19)N1—C19—C18124.83 (19)
O3—C1—C9117.00 (19)N1—C19—H19117.6
O1—C2—O2125.5 (2)C18—C19—H19117.6
O1—C2—C3116.2 (2)N2—C20—H20A109.5
O2—C2—C3118.28 (19)N2—C20—H20B109.5
C8—C3—C4118.0 (2)H20A—C20—H20B109.5
C8—C3—C2120.5 (2)N2—C20—H20C109.5
C4—C3—C2121.5 (2)H20A—C20—H20C109.5
C5—C4—C3120.7 (2)H20B—C20—H20C109.5
C5—C4—H4119.7N2—C21—H21A109.5
C3—C4—H4119.7N2—C21—H21B109.5
C4—C5—C6121.4 (2)H21A—C21—H21B109.5
C4—C5—H5119.3N2—C21—H21C109.5
C6—C5—H5119.3H21A—C21—H21C109.5
C7—C6—C5117.9 (3)H21B—C21—H21C109.5
C7—C6—C22121.1 (3)C6—C22—H22A109.5
C5—C6—C22121.0 (3)C6—C22—H22B109.5
C6—C7—C8121.4 (3)H22A—C22—H22B109.5
C6—C7—H7119.3C6—C22—H22C109.5
C8—C7—H7119.3H22A—C22—H22C109.5
C7—C8—C3120.7 (2)H22B—C22—H22C109.5
C7—C8—H8119.7C12—C23—H23A109.5
C3—C8—H8119.7C12—C23—H23B109.5
C14—C9—C10117.6 (2)H23A—C23—H23B109.5
C14—C9—C1120.44 (19)C12—C23—H23C109.5
C10—C9—C1122.0 (2)H23A—C23—H23C109.5
C9—C10—C11120.7 (3)H23B—C23—H23C109.5
O1—C2—C3—C86.7 (3)C16—C15—N1—Zn1−174.77 (17)
O2—C2—C3—C8−172.9 (2)C18—C19—N1—C15−1.8 (3)
O1—C2—C3—C4−174.11 (19)C18—C19—N1—Zn1174.94 (19)
O2—C2—C3—C46.3 (3)C16—C17—N2—C210.5 (3)
C8—C3—C4—C51.3 (3)C18—C17—N2—C21−180.0 (2)
C2—C3—C4—C5−177.9 (2)C16—C17—N2—C20177.3 (2)
C3—C4—C5—C6−0.4 (4)C18—C17—N2—C20−3.2 (3)
C4—C5—C6—C7−0.4 (5)O2—C2—O1—Zn1i9.7 (4)
C4—C5—C6—C22−179.9 (3)C3—C2—O1—Zn1i−169.87 (15)
C5—C6—C7—C80.2 (5)O1—C2—O2—Zn1−7.3 (3)
C22—C6—C7—C8179.8 (4)C3—C2—O2—Zn1172.26 (13)
C6—C7—C8—C30.7 (5)O4—C1—O3—Zn111.8 (3)
C4—C3—C8—C7−1.5 (4)C9—C1—O3—Zn1−166.70 (13)
C2—C3—C8—C7177.8 (2)O3—C1—O4—Zn1i−5.9 (3)
O4—C1—C9—C14−176.7 (2)C9—C1—O4—Zn1i172.51 (13)
O3—C1—C9—C141.9 (3)C15—N1—Zn1—O4i0.20 (17)
O4—C1—C9—C101.8 (3)C19—N1—Zn1—O4i−176.33 (16)
O3—C1—C9—C10−179.6 (2)C15—N1—Zn1—O3−179.00 (16)
C14—C9—C10—C112.9 (4)C19—N1—Zn1—O34.47 (18)
C1—C9—C10—C11−175.6 (2)C15—N1—Zn1—O1i−91.22 (17)
C9—C10—C11—C120.0 (5)C19—N1—Zn1—O1i92.25 (17)
C10—C11—C12—C13−3.3 (5)C15—N1—Zn1—O289.65 (17)
C10—C11—C12—C23175.5 (3)C19—N1—Zn1—O2−86.88 (17)
C11—C12—C13—C143.7 (4)C15—N1—Zn1—Zn1i−107.6 (3)
C23—C12—C13—C14−175.1 (3)C19—N1—Zn1—Zn1i75.8 (3)
C10—C9—C14—C13−2.6 (4)C1—O3—Zn1—N1161.67 (19)
C1—C9—C14—C13176.0 (2)C1—O3—Zn1—O4i−16.3 (3)
C12—C13—C14—C9−0.8 (4)C1—O3—Zn1—O1i63.22 (19)
N1—C15—C16—C170.9 (3)C1—O3—Zn1—O2−94.7 (2)
C15—C16—C17—N2175.8 (2)C1—O3—Zn1—Zn1i−8.39 (18)
C15—C16—C17—C18−3.8 (3)C2—O2—Zn1—N1−179.95 (14)
N2—C17—C18—C19−175.6 (2)C2—O2—Zn1—O4i−78.43 (16)
C16—C17—C18—C193.9 (3)C2—O2—Zn1—O379.21 (15)
C17—C18—C19—N1−1.2 (4)C2—O2—Zn1—O1i2.3 (3)
C16—C15—N1—C192.0 (3)C2—O2—Zn1—Zn1i3.07 (15)

Symmetry codes: (i) −x+2, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C21—H21C···O3ii0.962.543.484 (3)168
C23—H23B···Cg1iii0.962.993.925 (4)165

Symmetry codes: (ii) x+1, y, z; (iii) x−1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2733).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Halcrow, M. A., Kilner, C. A. & Thornton-Pett, M. (2000). Acta Cryst. C56, 1425–1426. [PubMed]
  • Huang, Y.-L., Huang, M.-Y., Chan, T.-H., Chang, B. C. & Lii, K. L. (2007). Chem. Mater.19, 3232–3237.
  • Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., Letard, J. F., Moubaraki, B., Murray, K. S. & Kepert, C. J. (2008). J. Am. Chem. Soc.130, 2869–2876. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, L., Fang, R.-Q., Xue, J.-Y., Xiao, Z.-P., Tan, S.-H. & Zhu, H.-L. (2008). Aust. J. Chem.61, 288–296.
  • Sommerfeldt, H. M., Meermann, C., Tornroos, K. W. & Anwander, R. (2008). Inorg. Chem.47, 4696–4705. [PubMed]
  • Tabata, K., Fukushima, K. & Okura, I. (2000). J. Porphyrins Phthaolcyanines, 4, 278–284.
  • Wang, P., Ma, J.-P., Li, X.-Y., Huang, R.-Q. & Dong, Y.-B. (2009). Acta Cryst. C65, m78–m81. [PubMed]
  • Xiao, Z.-P., Fang, F.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem.43, 1828–1836. [PubMed]
  • Yang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375–m377. [PubMed]
  • Yang, H.-L., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1213–m1214.
  • You, Z.-L., Lin, Y.-S., Liu, W.-S., Tan, M.-Y. & Zhu, H.-L. (2003). Acta Cryst. E59, m1025–m1027.
  • You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m560–m562.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography