PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 August 1; 65(Pt 8): o1841.
Published online 2009 July 11. doi:  10.1107/S1600536809026178
PMCID: PMC2977466

1(2,3),2(3,2),3(2,3),4(3,2)-Tetra­kis(1-benzothio­phena)cyclo­tetra­phane benzene sesquisolvate

Abstract

In the title compound, C32H16S4·1.5C6H6, the substituted cyclo­octa­tetra­ene (COT) ring compound has approximate local D 2 point symmetry of the so-called ‘saddle’ form: the dihedral angles between neighboring benzo[b]thio­phene units are 61.33 (4), 61.61 (4), 56.443 (14) and 58.32 (4)°. The short distance [3.545 (1) Å] between an S atom and the centroid of a benzene ring in a neighboring mol­ecule may indicate S(...)π inter­actions in the crystal.

Related literature

For the synthesis, see: Kauffmann et al. (1978 [triangle]). For related structures, see: Krömer et al. (2000 [triangle]); Mak & Wong (1987 [triangle]); Rajca et al. (1997 [triangle], 2000 [triangle]); Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o1841-scheme1.jpg

Experimental

Crystal data

  • C32H16S4·1.5C6H6
  • M r = 645.85
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o1841-efi1.jpg
  • a = 9.5167 (10) Å
  • b = 13.3035 (14) Å
  • c = 13.9186 (15) Å
  • α = 65.674 (1)°
  • β = 84.646 (1)°
  • γ = 81.955 (1)°
  • V = 1588.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 294 K
  • 0.41 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.877, T max = 0.952
  • 11927 measured reflections
  • 5873 independent reflections
  • 4670 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.121
  • S = 1.04
  • 5873 reflections
  • 394 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026178/hb2996sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026178/hb2996Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Jiange Wang, Luoyang Normal University, for the crystal measurement and Mr Pengtao Ma for discussions. This research was supported by the NSFC (20572015, 20672028, 50803015), the Program for NCET-05–0610, the SRF for ROCS–SEM, the Program for Young Excellent Talents in Henan Universities and the Foundation of Henan University (07YB2R006).

supplementary crystallographic information

Comment

In current electronic and supramolecular chemistry, the rational design of macrocyclic compound represents one of the most exciting and rapidly developing fields, owing to their potential as functional materials (Krömer et al., 2000). Mostly, the compounds with central COT ring have the "saddle" form (Rajca et al., 1997, Mak & Wong, 1987, Rajca et al., 2000, Wang et al., 2007), such as tetra-o-phenylene, tetra-o-thiophene. In these "saddle" form molecules, the average dihedral angle of "saddle" form is different when the structural unit is different. Cycloocta[l,2-b:4,3-b':5,6-b":8,7-b"']tetrathionaphthene (I), with benza[b]thiophene as the structural unit was synthesized by Kauffmann et al. in 1978. In our ongoing studies of macrocyclic compounds, we find the structural unit plays an important role on the crystal structure and intermolecular interaction. In present paper, we report the crystal structure of I.

As shown in I (Fig. 1), three orthogonal C2 axes of symmetry are compatible with the D2 point group. One pair of the orthogonal chiral axes (e.g., R,R) corresponds to the two 1,1'-linkages and the other pair (e.g., S,S) corresponds to the two 2,2'-linkages of the benza[b]thiophene moieties. The four dihedral angles are 61.329 (35)° between C24—C25—C26—C27—C28—C29—C30—S4—C31 and C16—C17—C18—C23—C22—C21—C20—C19—S3, 61.610 (39)° between C8—C9—C10—C11—C12—C13—C14—S2—C15 and C1—C2—C3—C4—C5- C6—C7—C32—S1, 56.443 (14)° between C16—C17—C18—C23—C22—C21—C20—C19—S3 and C8—C9—C10—C11—C12—C13—C14—S2—C15, 58.315 (34)° between C24—C25—C26—C27—C28—C29—C30—S4—C31 and C1—C2—C3—C4—C5—C6—C7—C32—S1. The average value (59.4°) of the four dihedral angles is smaller than that in tetra-o-phenylene with 65° (Rajca et al., 1997) and larger than that in tetra-o-thiophene with 51.7° (Wang et al., 2007). The distance between S1 and the centroid of plane (C25, C26, C27, C28, C29, C30) is 3.378 Å, which indicating obvious S-π interaction between the neighboring molecules. Under the effect of S-π interaction, the molecular arranges with the reversal one in the crystal packing as shown in Fig. 2.

Experimental

The title compound was synthesized according to the method of Kauffmann (1978). The overall yield was improved from 11% to 42.4%. To a solution of 3,3'-bibenzo[b]thiophene (0.3850 g, 1.45 mmol) in anhyd Et2O (50 ml), n-BuLi (2.28 M, 1.46 ml, 3.32 mmol, 2.3 eq) was added dropwise at -78 °C, then the reaction mixture was warmed slowly to 50 °C with refluxing for 2 h and then cooled to -78 °C. Dry CuCl2 (0.9741 g, 7.22 mmol, 5.0 equiv) was added at -78 °C and warmed slowly to -55 °C for 1 h, and then slowly warmed to ambient temperature overnight. After normal work-up, the crude product was purified by column chromatography on silica gel with PE (60–90 °C) /CHCl3 (3:1, v/v) as eluent to yield I (0.1621 g, 42.4%) as a white solid. mp>300 °C. 1H NMR (400 MHz, DMSO-d6): δ 8.12 (d, J = 8.0 Hz, 4H), 7.48 (t, J = 7.8 Hz, 4H), 7.37 (t, J = 7.4 Hz, 4H), 7.25 (d, J = 7.6 Hz, 4H). 13C NMR (100 MHz, CDCl3): δ 140.8, 138.6, 134.8, 131.3, 125.1, 124.7, 124.4, 122.3. IR: 3056, 2922 (C—H), 1435.5 (C=C) cm-1. HRMS (MAIDI-TOF MS EI+) m/z calcd for [C32H16S4] 528.0135, found 528.0131. Yellow blocks of (I) were obtained by slow evaporation of benzene solution over a period of two weeks.

Refinement

The H atoms were geometrically placed (C—H = 0.93Å) and refined as riding with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
S-π interactions in crystal packing of (I).

Crystal data

C32H16S4·1.5C6H6Z = 2
Mr = 645.85F(000) = 670
Triclinic, P1Dx = 1.350 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5167 (10) ÅCell parameters from 3538 reflections
b = 13.3035 (14) Åθ = 0.00–0.00°
c = 13.9186 (15) ŵ = 0.33 mm1
α = 65.674 (1)°T = 294 K
β = 84.646 (1)°Block, yellow
γ = 81.955 (1)°0.41 × 0.25 × 0.15 mm
V = 1588.7 (3) Å3

Data collection

Bruker SMART CCD diffractometer5873 independent reflections
Radiation source: fine-focus sealed tube4670 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −11→11
Tmin = 0.877, Tmax = 0.952k = −16→16
11927 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0507P)2 + 1.0002P] where P = (Fo2 + 2Fc2)/3
5873 reflections(Δ/σ)max = 0.001
394 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1068 (3)0.6386 (2)0.2230 (2)0.0397 (6)
C20.0961 (3)0.5385 (2)0.2153 (3)0.0535 (7)
H20.08100.53720.15070.064*
C30.1082 (3)0.4420 (2)0.3052 (3)0.0576 (8)
H30.10150.37470.30130.069*
C40.1304 (3)0.4435 (2)0.4019 (2)0.0518 (7)
H40.13880.37730.46170.062*
C50.1400 (3)0.5421 (2)0.4101 (2)0.0423 (6)
H50.15470.54230.47510.051*
C60.1276 (2)0.6421 (2)0.31980 (19)0.0344 (5)
C70.1259 (2)0.75439 (19)0.31116 (18)0.0319 (5)
C80.1456 (2)0.78278 (18)0.40068 (18)0.0321 (5)
C90.2687 (2)0.74267 (19)0.46507 (18)0.0347 (5)
C100.3936 (3)0.6788 (2)0.4529 (2)0.0440 (6)
H100.40400.65420.39880.053*
C110.5009 (3)0.6526 (2)0.5222 (2)0.0521 (7)
H110.58360.60940.51500.063*
C120.4870 (3)0.6902 (2)0.6029 (2)0.0524 (7)
H120.56080.67190.64860.063*
C130.3664 (3)0.7535 (2)0.6163 (2)0.0475 (7)
H130.35760.77850.67000.057*
C140.2573 (3)0.7792 (2)0.54677 (19)0.0380 (6)
C150.0472 (3)0.84729 (19)0.43395 (18)0.0332 (5)
C16−0.0901 (2)0.90222 (18)0.38884 (18)0.0323 (5)
C17−0.1138 (2)0.97723 (18)0.28804 (18)0.0326 (5)
C18−0.2632 (3)1.01481 (19)0.27136 (19)0.0358 (5)
C19−0.3476 (3)0.9663 (2)0.3631 (2)0.0398 (6)
C20−0.4957 (3)0.9883 (2)0.3643 (3)0.0529 (7)
H20−0.55030.95510.42560.063*
C21−0.5581 (3)1.0605 (3)0.2721 (3)0.0611 (8)
H21−0.65631.07740.27140.073*
C22−0.4768 (3)1.1085 (3)0.1800 (3)0.0592 (8)
H22−0.52161.15620.11840.071*
C23−0.3308 (3)1.0868 (2)0.1784 (2)0.0469 (6)
H23−0.27771.11970.11630.056*
C240.0004 (2)1.01805 (19)0.20673 (18)0.0338 (5)
C250.0249 (3)1.1333 (2)0.15376 (18)0.0362 (5)
C26−0.0462 (3)1.2254 (2)0.1694 (2)0.0448 (6)
H26−0.12161.21670.21870.054*
C27−0.0033 (4)1.3285 (2)0.1110 (2)0.0567 (8)
H27−0.05071.38990.12080.068*
C280.1104 (4)1.3430 (2)0.0372 (3)0.0626 (9)
H280.13831.4135−0.00070.075*
C290.1816 (3)1.2545 (2)0.0197 (2)0.0532 (7)
H290.25641.2643−0.03010.064*
C300.1387 (3)1.1492 (2)0.07885 (19)0.0407 (6)
C310.0942 (3)0.9515 (2)0.17253 (18)0.0355 (5)
C320.1042 (2)0.83069 (19)0.21043 (18)0.0339 (5)
C330.2633 (3)0.3588 (4)0.7185 (2)0.1020 (15)
H330.18310.39400.67950.122*
C340.3502 (5)0.4197 (2)0.7428 (3)0.1141 (19)
H340.32820.49610.72000.137*
C350.4697 (4)0.3670 (4)0.8010 (3)0.118 (2)
H350.52770.40810.81720.142*
C360.5032 (3)0.2531 (4)0.8351 (2)0.1134 (18)
H360.58370.21790.87370.136*
C370.4159 (5)0.1920 (2)0.8112 (3)0.1136 (18)
H370.43730.11550.83450.136*
C380.2969 (4)0.2450 (4)0.7526 (3)0.1034 (16)
H380.23910.20390.73600.124*
C390.4111 (5)0.4474 (5)0.0892 (4)0.1025 (15)
H390.35170.41170.14680.123*
C400.5457 (6)0.4043 (3)0.0777 (4)0.0949 (14)
H400.57910.33910.13300.114*
C410.6349 (5)0.4453 (5)−0.0039 (5)0.1049 (15)
H410.72380.4075−0.00730.126*
S10.08749 (7)0.77085 (6)0.12239 (5)0.04378 (18)
S20.09726 (7)0.86121 (6)0.54491 (5)0.04315 (18)
S3−0.24494 (7)0.87555 (5)0.46789 (5)0.04184 (18)
S40.21218 (7)1.02532 (6)0.07232 (5)0.04525 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0360 (13)0.0424 (14)0.0456 (15)−0.0014 (11)−0.0032 (11)−0.0235 (12)
C20.0588 (18)0.0521 (18)0.0627 (19)−0.0048 (14)−0.0055 (15)−0.0361 (16)
C30.0627 (19)0.0404 (16)0.079 (2)−0.0048 (14)−0.0038 (16)−0.0334 (16)
C40.0505 (17)0.0332 (14)0.0655 (19)−0.0007 (12)−0.0030 (14)−0.0150 (13)
C50.0404 (14)0.0366 (14)0.0457 (15)0.0000 (11)−0.0030 (11)−0.0136 (12)
C60.0302 (12)0.0353 (13)0.0400 (13)−0.0012 (10)−0.0030 (10)−0.0180 (11)
C70.0289 (12)0.0340 (12)0.0335 (12)0.0007 (9)−0.0036 (9)−0.0150 (10)
C80.0369 (13)0.0277 (12)0.0294 (12)−0.0030 (10)−0.0037 (10)−0.0089 (10)
C90.0361 (13)0.0332 (13)0.0313 (12)−0.0042 (10)−0.0038 (10)−0.0088 (10)
C100.0386 (14)0.0479 (15)0.0423 (15)0.0001 (12)−0.0018 (11)−0.0167 (12)
C110.0365 (15)0.0588 (18)0.0518 (17)0.0031 (13)−0.0085 (12)−0.0142 (14)
C120.0424 (16)0.0625 (19)0.0447 (16)−0.0080 (14)−0.0149 (12)−0.0107 (14)
C130.0498 (16)0.0538 (17)0.0402 (15)−0.0083 (13)−0.0102 (12)−0.0179 (13)
C140.0419 (14)0.0351 (13)0.0342 (13)−0.0050 (11)−0.0045 (11)−0.0104 (11)
C150.0394 (13)0.0300 (12)0.0282 (12)−0.0045 (10)−0.0028 (10)−0.0093 (10)
C160.0365 (13)0.0274 (12)0.0329 (12)−0.0015 (10)−0.0015 (10)−0.0128 (10)
C170.0367 (13)0.0256 (12)0.0359 (13)−0.0017 (10)−0.0040 (10)−0.0129 (10)
C180.0377 (13)0.0281 (12)0.0420 (14)−0.0016 (10)−0.0044 (11)−0.0146 (11)
C190.0383 (14)0.0335 (13)0.0470 (15)−0.0005 (11)−0.0032 (11)−0.0164 (12)
C200.0386 (15)0.0533 (17)0.0676 (19)−0.0058 (13)0.0030 (14)−0.0260 (15)
C210.0336 (15)0.064 (2)0.082 (2)0.0037 (14)−0.0114 (15)−0.0259 (18)
C220.0475 (17)0.0550 (18)0.068 (2)0.0022 (14)−0.0223 (15)−0.0157 (16)
C230.0462 (16)0.0415 (15)0.0473 (16)−0.0028 (12)−0.0099 (12)−0.0113 (12)
C240.0354 (13)0.0314 (12)0.0315 (12)−0.0040 (10)−0.0074 (10)−0.0082 (10)
C250.0399 (13)0.0333 (13)0.0312 (12)−0.0045 (10)−0.0107 (10)−0.0069 (10)
C260.0528 (16)0.0352 (14)0.0433 (15)−0.0032 (12)−0.0115 (12)−0.0113 (12)
C270.074 (2)0.0338 (15)0.0590 (19)−0.0044 (14)−0.0219 (16)−0.0124 (14)
C280.073 (2)0.0376 (16)0.065 (2)−0.0198 (15)−0.0213 (17)−0.0003 (15)
C290.0536 (17)0.0489 (17)0.0443 (16)−0.0188 (14)−0.0070 (13)−0.0010 (13)
C300.0433 (14)0.0392 (14)0.0325 (13)−0.0090 (11)−0.0094 (11)−0.0043 (11)
C310.0373 (13)0.0363 (13)0.0301 (12)−0.0049 (10)−0.0038 (10)−0.0100 (10)
C320.0329 (12)0.0363 (13)0.0342 (13)−0.0038 (10)−0.0003 (10)−0.0160 (11)
C330.073 (3)0.145 (5)0.067 (3)−0.004 (3)0.014 (2)−0.028 (3)
C340.137 (5)0.065 (3)0.125 (4)−0.030 (3)0.063 (4)−0.032 (3)
C350.098 (4)0.177 (6)0.137 (5)−0.086 (4)0.048 (3)−0.111 (5)
C360.057 (3)0.182 (6)0.090 (3)0.013 (3)−0.001 (2)−0.053 (4)
C370.129 (4)0.073 (3)0.131 (4)−0.004 (3)0.050 (4)−0.047 (3)
C380.099 (4)0.139 (5)0.111 (4)−0.058 (3)0.036 (3)−0.084 (4)
C390.089 (3)0.132 (4)0.089 (3)−0.032 (3)−0.004 (3)−0.040 (3)
C400.139 (4)0.054 (2)0.079 (3)0.003 (3)−0.039 (3)−0.010 (2)
C410.067 (3)0.154 (5)0.115 (4)0.001 (3)−0.006 (3)−0.079 (4)
S10.0533 (4)0.0462 (4)0.0358 (3)−0.0035 (3)−0.0077 (3)−0.0201 (3)
S20.0516 (4)0.0441 (4)0.0374 (4)0.0043 (3)−0.0097 (3)−0.0215 (3)
S30.0403 (4)0.0389 (4)0.0388 (4)−0.0031 (3)0.0036 (3)−0.0097 (3)
S40.0438 (4)0.0461 (4)0.0380 (4)−0.0069 (3)0.0046 (3)−0.0099 (3)

Geometric parameters (Å, °)

C1—C21.399 (4)C21—H210.9300
C1—C61.400 (3)C22—C231.379 (4)
C1—S11.737 (3)C22—H220.9300
C2—C31.374 (4)C23—H230.9300
C2—H20.9300C24—C311.362 (3)
C3—C41.390 (4)C24—C251.444 (3)
C3—H30.9300C25—C261.403 (4)
C4—C51.379 (4)C25—C301.405 (4)
C4—H40.9300C26—C271.374 (4)
C5—C61.403 (3)C26—H260.9300
C5—H50.9300C27—C281.397 (5)
C6—C71.446 (3)C27—H270.9300
C7—C321.364 (3)C28—C291.373 (4)
C7—C81.477 (3)C28—H280.9300
C8—C151.360 (3)C29—C301.398 (4)
C8—C91.445 (3)C29—H290.9300
C9—C141.400 (3)C30—S41.733 (3)
C9—C101.400 (3)C31—C321.462 (3)
C10—C111.379 (4)C31—S41.749 (2)
C10—H100.9300C32—S11.743 (2)
C11—C121.395 (4)C33—C381.3855
C11—H110.9300C33—C341.3860
C12—C131.370 (4)C33—H330.9300
C12—H120.9300C34—C351.3869
C13—C141.395 (3)C34—H340.9300
C13—H130.9300C35—C361.3868
C14—S21.741 (3)C35—H350.9300
C15—C161.464 (3)C36—C371.3868
C15—S21.745 (2)C36—H360.9300
C16—C171.363 (3)C37—C381.3862
C16—S31.741 (2)C37—H370.9300
C17—C181.447 (3)C38—H380.9300
C17—C241.478 (3)C39—C401.352 (6)
C18—C191.402 (3)C39—C41i1.471 (7)
C18—C231.402 (3)C39—H390.9300
C19—C201.399 (4)C40—C411.322 (6)
C19—S31.739 (3)C40—H400.9300
C20—C211.374 (4)C41—C39i1.471 (7)
C20—H200.9300C41—H410.9300
C21—C221.388 (4)
C2—C1—C6121.4 (3)C23—C22—H22119.4
C2—C1—S1126.9 (2)C21—C22—H22119.4
C6—C1—S1111.54 (18)C22—C23—C18119.5 (3)
C3—C2—C1118.5 (3)C22—C23—H23120.3
C3—C2—H2120.8C18—C23—H23120.3
C1—C2—H2120.8C31—C24—C25112.1 (2)
C2—C3—C4121.0 (3)C31—C24—C17123.9 (2)
C2—C3—H3119.5C25—C24—C17124.0 (2)
C4—C3—H3119.5C26—C25—C30118.9 (2)
C5—C4—C3120.8 (3)C26—C25—C24128.9 (2)
C5—C4—H4119.6C30—C25—C24112.2 (2)
C3—C4—H4119.6C27—C26—C25119.2 (3)
C4—C5—C6119.7 (3)C27—C26—H26120.4
C4—C5—H5120.2C25—C26—H26120.4
C6—C5—H5120.2C26—C27—C28121.1 (3)
C1—C6—C5118.6 (2)C26—C27—H27119.4
C1—C6—C7112.3 (2)C28—C27—H27119.4
C5—C6—C7129.0 (2)C29—C28—C27120.9 (3)
C32—C7—C6111.9 (2)C29—C28—H28119.5
C32—C7—C8124.2 (2)C27—C28—H28119.5
C6—C7—C8124.0 (2)C28—C29—C30118.3 (3)
C15—C8—C9112.2 (2)C28—C29—H29120.9
C15—C8—C7123.5 (2)C30—C29—H29120.9
C9—C8—C7124.2 (2)C29—C30—C25121.5 (3)
C14—C9—C10118.8 (2)C29—C30—S4126.9 (2)
C14—C9—C8112.2 (2)C25—C30—S4111.60 (18)
C10—C9—C8128.9 (2)C24—C31—C32127.3 (2)
C11—C10—C9119.3 (3)C24—C31—S4112.96 (18)
C11—C10—H10120.4C32—C31—S4119.71 (18)
C9—C10—H10120.4C7—C32—C31127.2 (2)
C10—C11—C12120.8 (3)C7—C32—S1113.15 (18)
C10—C11—H11119.6C31—C32—S1119.69 (17)
C12—C11—H11119.6C38—C33—C34119.6
C13—C12—C11121.2 (3)C38—C33—H33120.2
C13—C12—H12119.4C34—C33—H33120.2
C11—C12—H12119.4C33—C34—C35120.1
C12—C13—C14118.1 (3)C33—C34—H34119.9
C12—C13—H13121.0C35—C34—H34119.9
C14—C13—H13121.0C36—C35—C34120.2
C13—C14—C9121.8 (2)C36—C35—H35119.9
C13—C14—S2126.7 (2)C34—C35—H35119.9
C9—C14—S2111.44 (18)C35—C36—C37119.7
C8—C15—C16127.9 (2)C35—C36—H36120.2
C8—C15—S2113.03 (18)C37—C36—H36120.2
C16—C15—S2119.06 (17)C38—C37—C36120.0
C17—C16—C15127.1 (2)C38—C37—H37120.0
C17—C16—S3113.18 (18)C36—C37—H37120.0
C15—C16—S3119.76 (17)C33—C38—C37120.4
C16—C17—C18111.9 (2)C33—C38—H38119.8
C16—C17—C24123.9 (2)C37—C38—H38119.8
C18—C17—C24124.2 (2)C40—C39—C41i115.2 (4)
C19—C18—C23118.4 (2)C40—C39—H39122.4
C19—C18—C17112.2 (2)C41i—C39—H39122.4
C23—C18—C17129.3 (2)C41—C40—C39126.8 (4)
C20—C19—C18122.0 (2)C41—C40—H40116.6
C20—C19—S3126.6 (2)C39—C40—H40116.6
C18—C19—S3111.39 (18)C40—C41—C39i117.8 (4)
C21—C20—C19118.0 (3)C40—C41—H41121.1
C21—C20—H20121.0C39i—C41—H41121.1
C19—C20—H20121.0C1—S1—C3291.15 (12)
C20—C21—C22121.0 (3)C14—S2—C1591.10 (12)
C20—C21—H21119.5C19—S3—C1691.25 (12)
C22—C21—H21119.5C30—S4—C3191.14 (12)
C23—C22—C21121.1 (3)
C6—C1—C2—C3−0.8 (4)C21—C22—C23—C180.1 (4)
S1—C1—C2—C3−177.0 (2)C19—C18—C23—C220.6 (4)
C1—C2—C3—C40.1 (4)C17—C18—C23—C22177.9 (3)
C2—C3—C4—C50.3 (5)C16—C17—C24—C3160.4 (3)
C3—C4—C5—C6−0.1 (4)C18—C17—C24—C31−121.9 (3)
C2—C1—C6—C51.0 (4)C16—C17—C24—C25−120.1 (3)
S1—C1—C6—C5177.75 (18)C18—C17—C24—C2557.7 (3)
C2—C1—C6—C7−176.0 (2)C31—C24—C25—C26−178.0 (2)
S1—C1—C6—C70.7 (3)C17—C24—C25—C262.4 (4)
C4—C5—C6—C1−0.5 (4)C31—C24—C25—C300.6 (3)
C4—C5—C6—C7175.9 (2)C17—C24—C25—C30−179.0 (2)
C1—C6—C7—C320.0 (3)C30—C25—C26—C270.2 (4)
C5—C6—C7—C32−176.6 (2)C24—C25—C26—C27178.7 (2)
C1—C6—C7—C8−179.8 (2)C25—C26—C27—C28−0.5 (4)
C5—C6—C7—C83.6 (4)C26—C27—C28—C290.8 (5)
C32—C7—C8—C1559.8 (3)C27—C28—C29—C30−0.9 (4)
C6—C7—C8—C15−120.5 (3)C28—C29—C30—C250.6 (4)
C32—C7—C8—C9−122.4 (3)C28—C29—C30—S4−179.3 (2)
C6—C7—C8—C957.4 (3)C26—C25—C30—C29−0.3 (4)
C15—C8—C9—C140.3 (3)C24—C25—C30—C29−179.0 (2)
C7—C8—C9—C14−177.8 (2)C26—C25—C30—S4179.67 (19)
C15—C8—C9—C10−176.9 (2)C24—C25—C30—S40.9 (3)
C7—C8—C9—C105.0 (4)C25—C24—C31—C32178.0 (2)
C14—C9—C10—C110.7 (4)C17—C24—C31—C32−2.5 (4)
C8—C9—C10—C11177.8 (2)C25—C24—C31—S4−1.9 (3)
C9—C10—C11—C12−0.8 (4)C17—C24—C31—S4177.73 (18)
C10—C11—C12—C130.4 (4)C6—C7—C32—C31179.1 (2)
C11—C12—C13—C140.2 (4)C8—C7—C32—C31−1.1 (4)
C12—C13—C14—C9−0.3 (4)C6—C7—C32—S1−0.7 (3)
C12—C13—C14—S2−177.9 (2)C8—C7—C32—S1179.04 (18)
C10—C9—C14—C13−0.2 (4)C24—C31—C32—C7−58.1 (4)
C8—C9—C14—C13−177.7 (2)S4—C31—C32—C7121.7 (2)
C10—C9—C14—S2177.79 (19)C24—C31—C32—S1121.7 (2)
C8—C9—C14—S20.2 (3)S4—C31—C32—S1−58.5 (2)
C9—C8—C15—C16−180.0 (2)C38—C33—C34—C35−0.1
C7—C8—C15—C16−1.9 (4)C33—C34—C35—C360.1
C9—C8—C15—S2−0.7 (3)C34—C35—C36—C37−0.4
C7—C8—C15—S2177.35 (18)C35—C36—C37—C380.7
C8—C15—C16—C17−58.0 (4)C34—C33—C38—C370.4
S2—C15—C16—C17122.8 (2)C36—C37—C38—C33−0.7
C8—C15—C16—S3123.5 (2)C41i—C39—C40—C41−4.3 (8)
S2—C15—C16—S3−55.7 (2)C39—C40—C41—C39i4.4 (8)
C15—C16—C17—C18−179.7 (2)C2—C1—S1—C32175.6 (3)
S3—C16—C17—C18−1.0 (3)C6—C1—S1—C32−0.98 (19)
C15—C16—C17—C24−1.7 (4)C7—C32—S1—C11.00 (19)
S3—C16—C17—C24177.01 (18)C31—C32—S1—C1−178.9 (2)
C16—C17—C18—C190.8 (3)C13—C14—S2—C15177.3 (2)
C24—C17—C18—C19−177.2 (2)C9—C14—S2—C15−0.55 (19)
C16—C17—C18—C23−176.6 (2)C8—C15—S2—C140.74 (19)
C24—C17—C18—C235.4 (4)C16—C15—S2—C14−179.94 (19)
C23—C18—C19—C20−0.4 (4)C20—C19—S3—C16177.5 (2)
C17—C18—C19—C20−178.1 (2)C18—C19—S3—C16−0.24 (19)
C23—C18—C19—S3177.46 (19)C17—C16—S3—C190.72 (19)
C17—C18—C19—S3−0.3 (3)C15—C16—S3—C19179.49 (19)
C18—C19—C20—C21−0.4 (4)C29—C30—S4—C31178.3 (2)
S3—C19—C20—C21−178.0 (2)C25—C30—S4—C31−1.62 (19)
C19—C20—C21—C221.2 (5)C24—C31—S4—C302.02 (19)
C20—C21—C22—C23−1.0 (5)C32—C31—S4—C30−177.8 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2996).

References

  • Bruker (2001). SAINT-Plus, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kauffmann, T., Greving, B., Kriegesmann, R., Mitschker, A. & Woltermann, A. (1978). Chem. Ber.111, 1330–1336.
  • Krömer, J., Rios-Carreras, I., Fuhrmann, G., Musch, C., Wunderlin, M., Debaerdemaeker, T., Mena-Osteritz, E. & Bäuerle, P. (2000). Angew. Chem. Int. Ed. Engl.39, 3481—3486. [PubMed]
  • Mak, T. C. W. & Wong, H. N. C. (1987). Top. Curr. Chem.140, 141–164.
  • Rajca, A., Safronov, A., Rajca, S. & Shoemaker, R. (1997). Angew. Chem. Int. Ed. Engl.36, 488–491.
  • Rajca, A., Safronov, A., Rajca, S. & Wongsriratanakul, J. (2000). J. Am. Chem. Soc.122, 3351–3357.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Y., Wang, Z., Zhao, D., Wang, Z., Chen, Y. & Wang, H. (2007). Synlett, pp. 2390–2394.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography